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1 ABSTRACT

Abstract

String diagrams were developed to aid reasoning in certain cat-
egories, most notably monoidal categories. Extending basic
string diagrams with copy maps allows reasoning in categories
with finite products. Further adding functor boxes, allows reas-
oning in finitely complete categories, categories with sub-object
classifiers, and cartesian closed categories. Combining these al-
lows reasoning in arbitrary (elementary) topoi. This in turn al-
lows for a proof of the Fundamental TheoremofToposTheory
purely using string diagrams, as well as developing a string dia-
grammatic account of the internal logic of a topos (which coin-
cides with higher-order intuitionistic logic).
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Chapter 0

Introduction

This thesis presents an introduction to topoi and their internal logic via the use of string diagrams and

functor boxes.

String diagramswere introduced in [JS88], which demonstrates the equivalence between themorphisms

in monoidal categories and diagrams existing in the plane – string diagrams. This has been extended to

different kinds of categories; for a survey of such, see [Sel11]. It is common for these string diagrams

to be used to aid reasoning in these categories, most notable is in the case of Quantum Computation

being taught to High School students [D-CYP+23]. It is my hope that this thesis can contribute to this

tradition with the addition of string diagrams for topoi. I will combine the pure string diagrammatic

approach with functor boxes, as introduced in [Mel06].

A topos (or, in particular, an elementary topos, which is what this thesis deals with) is a category which

is in some sense a generalisation of Set. That is, it allows for set-like reasoning within it. We shall see

this in the form of higher-order intuitionistic logic, which is, at least in some senses, a slight weakening

of typical set theory with classical first-order logic. Topoi were originally introduced by Grothendieck

in the 1940s, for the purpose of studying sheaves on a space. However, nowadays there is a plethora of

research into topoi, going in many directions (see e.g., the as of yet incomplete [Joh02]). Here, however,

we are most concerned with its internal logic, through the lens of categorical logic.

Categorical logic is the field of interpreting logic within categories. Different kinds of categories have

different kinds of logics. For example, cartesian closed categories have an internal logic equivalent to

the typed lambda calculus. In the case of topoi, the internal logic is that of higher-order intuitionistic

logic.

Categorical logic is used throughout computer science. For example, there are applications in the design

of programming languages (such as Haskell or Lisp), compiler optimisation, and interactive theorem

proving (such as in HOL or Isabelle).

The only pre-requisite if that of basic category theory: in particular, the notions of category, functor,

natural transformation, and limit. Any basic course on category theory should cover these topics, but

for a full introduction to the pre-requisite material see [Rie17] (first three chapters) or [Mac71] (up to,

and including, chapter V). It would also be helpful for the reader to have encountered some type theory

and logic before, as well as categorical string diagrams in any capacity.

The structure of this thesis is as follows.

• Chapter 1 introduces monoidal categories and basic string diagrams and functor boxes.
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• Chapter 2 shows howwe can reason string-diagrammatically, by extending the results of the pre-

vious chapter, in categories with finite products, finitely complete categories, cartesian closed cat-

egories, and categories with sub-object classifiers. Combining these gives a string-diagrammatic

syntax for topoi.

• Chapter 3 uses these string diagrams to prove the Fundamental Theorem of Topos Theory. This

use of string diagrams, in places, provides a great simplification of the non-string-diagrammatic

proofs of the Fundamental Theorem.

• Chapter 4 introduces categorical logic using the previously developed string diagrams. Then we

shall see a development of the key logical operations inside of a topos, using string diagrams, which

yields a string-diagrammatic version of higher-order intuitionistic logic.

The main contributions of this thesis are as follows:

• In chapter 2, I introduce a new string-diagrammatic calculus (based on an old calculus which was

not proved to be coherent) for left and right closed monoidal categories, and show its coherence.

• In chapter 2, I introduce a new string-diagrammatic calculus for categories with a sub-object clas-

sifier.

• The previous two results yield a new string-diagrammatic calculus for topoi.

• In chapter 3, I prove the Fundamental Theorem of Topos Theory by using this calculus, which

yields new constructions of the dependent sum and dependent product functors.

• In chapter 4, I prove soundness for the internal type logic of a topos using string diagrams, and I

introduce nice novel syntactic sugar for the logical operators, which yields a string-diagrammatic

calculus for reasoning on higher-order intuitionistic logic.

Finally, before proceeding, here is a list of notation that I employ:

• Ob𝒞 is the collection of objects of the category 𝒞;

• id𝛢 is the identity morphism on𝐴;

• 1 is the terminal object of a category;

• 𝜋𝛢1×𝛢2𝑖 is the projection map of𝐴1 × 𝐴2 onto𝐴𝑖, as given by the binary product;

• 𝐴 ×𝑓,𝑔𝐵 is the pullback of 𝑓 ∶ 𝐴 → 𝑋 and 𝑔 ∶ 𝐵 → 𝑋; and

• 𝑓1,𝑓2𝑖פּ is the projection morphism𝐴1 ×𝑓1,𝑓2𝐴2 → 𝐴𝑖 of the pullback.



Chapter 1

Basic String Diagrams and Functor
Boxes

Contents

1.1 String Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 String Diagrams for (Strict) Monoidal Categories . . . . . . . . . . . . . 10

1.2.2 Symmetric Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Functor Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Inside-out Functor Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Outside-In Functor Boxes . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Natural Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

In this chapter, I will introduce the basic string diagrams and functor boxes, upon which the rest of the

thesis is based, we will start with arbitrary string diagrams applicable to any category, then move into

those specialised for monoidal categories; and finally I will introduce functor boxes.

1.1 String Diagrams

Tobegin, let’s see some basic string diagrams. These are diagramswhich allow us to graphically represent

a unique morphism in a given category. The most basic form is given 𝑓 ∶ 𝐴 → 𝐵 in a category 𝒞, we

write

𝑓𝐴 𝐵

to denote 𝑓 string diagrammatically.

We can represent composition as follows:
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1.1. STRINGDIAGRAMS 8

Definition 1.1.1: Graphical Composition

Let 𝒞 be a category, and 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 in 𝒞, then

𝑓 𝑔𝐴 𝐵 𝐶 ≔ 𝑔 ∘ 𝑓𝐴 𝐶
(1.1)

and then identities as just strings:

Definition 1.1.2: Graphical Identity

Let 𝒞 be a category, and𝐴 ∈ Ob𝒞, then

𝐴 ≔ id𝛢
𝐴 𝐴

(1.2)

Given these definitions, we can see that the length of a “string” in a string diagramdoesn’tmatter:

𝐴 (1.2)= 𝐴
id𝛢

𝐴
id𝛢

𝐴
id𝛢

𝐴

(1.1)= 𝐴
id𝛢 ∘ id𝛢 ∘ id𝛢

𝐴 = 𝐴
id𝛢

𝐴

(1.2)= 𝐴

We can also see that associativity is baked in to string diagrams, consider the following morphism

𝑓 𝑔 ℎ
𝐴 𝐵 𝐶 𝐷

we have no way of telling whether this is the composite (ℎ ∘ 𝑔) ∘ 𝑓 or ℎ ∘ (𝑔 ∘ 𝑓), which is good, because

they are identical in any category.

As it stands, these diagrams are not too interesting – we can enrich them by allowing vertical compos-

ition of wires and morphisms – which we shall see in the next section. However, first, we can string

diagrammatically define the notions of isomorphism and monomorphism:

Definition 1.1.3: Isomorphism

Let 𝒞 be a category with a morphism 𝑓 ∶ 𝐴 → 𝐵. Then we say that 𝑓 is an isomorphism if there

exists a morphism 𝑔 ∶ 𝐵 → 𝐴 in 𝒞 such that

𝑓 𝑔𝐴 𝐵 𝐴 = 𝐴

and

𝑔 𝑓𝐵 𝐴 𝐵 = 𝐵
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Definition 1.1.4: Monomorphism

Let𝒞 be a category withmorphism 𝑓 ∶ 𝐴 → 𝐵, we say that 𝑓 ismonic or that it is amonomorphism
if whenever

𝑔1 𝑓𝐶 𝐴 𝐵 = 𝑔2 𝑓𝐶 𝐴 𝐵

for some 𝑔1 and 𝑔2 in 𝒞, then

𝑔1𝐶 𝐴 = 𝑔2𝐶 𝐴

1.2 Monoidal Categories

Almost all work done with these kinds of string diagrams take place in monoidal categories. This is

because they allow us to greatly enrich the diagrams by allowing vertical composition, rather than the

horizontal composition that we have been limited to thus far.

Definition 1.2.1: Monoidal Category

Let ⟨𝒞, ⊗, 𝐼, 𝛼, 𝜆, 𝜌⟩ be a sextuple consisting of

• a category 𝒞;

• a functor⊗ ∶ 𝒞 × 𝒞 → 𝒞, known as themonoidal product;

• a distinguished element 𝐼 ∈ 𝒞, known as themonoidal unit;

• a natural isomorphism 𝛼 with components 𝛼𝛸,𝑌,𝑍 ∶ (𝑋 ⊗ 𝑌) ⊗ 𝑍 → 𝑋 ⊗ (𝑌 ⊗ 𝑍), known

as the associator;

• a natural isomorphism 𝜆with components 𝜆𝛸 ∶ 𝐼 ⊗ 𝑋 → 𝑋, known as the left unitor; and

• a natural isomorphism 𝜌with components 𝜌𝛸 ∶ 𝑋 ⊗ 𝐼 → 𝑋, known as the right unitor,

such that the following triangle and pentagon equations

(𝑋 ⊗ 𝐼) ⊗ 𝑌 𝑋 ⊗ (𝐼 ⊗ 𝑌)

𝑋 ⊗ 𝑌

𝛼𝛸,𝛪,𝑌

𝜌𝛸⊗id𝑌 id𝛸⊗𝜆𝑌

((𝑋 ⊗ 𝑌) ⊗ 𝑍) ⊗𝑊 (𝑋 ⊗ (𝑌 ⊗ 𝑍)) ⊗𝑊

(𝑋 ⊗ 𝑌) ⊗ (𝑍 ⊗𝑊) 𝑋 ⊗ ((𝑌 ⊗ 𝑍) ⊗𝑊)

𝑋 ⊗ (𝑌 ⊗ (𝑍 ⊗𝑊))

𝛼𝛸,𝑌,𝑍⊗id𝑊

𝛼𝛸⊗𝑌,𝑍,𝑊 𝛼𝛸,𝑌⊗𝑍,𝑊

𝛼𝛸,𝑌,𝑍⊗𝑊 id𝛸⊗𝛼𝑌,𝑍,𝑊
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commute for all objects𝑋, 𝑌, 𝑍,𝑊 of𝒞, then we say that𝒞 (or more precisely, ⟨𝒞, ⊗, 𝐼, 𝛼, 𝜆, 𝜌⟩) is
amonoidal category.

In the special case where 𝛼, 𝜆, and 𝜌 are identities, we call it a...

Definition 1.2.2: Strict Monoidal Category

Amonoidal category ⟨𝒞, ⊗, 𝐼, 𝛼, 𝜆, 𝜌⟩ is a strict monoidal category if the natural transformations 𝛼,
𝜆, and 𝜌 are all the identity natural transformations.

These are the kinds of monoidal categories that we are interested in. I will assume that all monoidal

categories are strict in this thesis. This may seem like a problematic approach, however, the following

Theorem ensures that this is innocent

Theorem 1.2.3: [Mac63]

Every monoidal category is monoidally equivalent to a strict monoidal category.

In other words, wemay always replace anymonoidal category with its strict equivalent, and work within

that instead. That is what we do. The reason for this is that strict monoidal categories have a particularly

nice string-diagrammatic syntax, which we shall see now.

1.2.1 String Diagrams for (Strict) Monoidal Categories

In stringdiagrams,we represent themonoidal product as stackingdiagrams vertically. That is,

Definition 1.2.4

et 𝒞 be a (strict) monoidal category with morphisms 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷, we define

𝑓

𝑔

𝐴 𝐵

𝐶 𝐷
≔ 𝑓 ⊗ 𝑔

𝐴 ⊗ 𝐶 𝐵 ⊗ 𝐷

Again, this has associativity baked in (which is why string diagrams naturally work with strict monoidal

categories over their non-strict counterparts):

𝑔

𝑓

ℎ

𝐴 𝐵

𝐶 𝐷

𝐸 𝐹

we cannot tell whether this is (𝑓 ⊗ 𝑔) ⊗ ℎ or 𝑓 ⊗ (𝑔 ⊗ ℎ).



11 CHAPTER 1. BASIC STRINGDIAGRAMS AND FUNCTOR BOXES

We draw the morphism id𝛪, the identity on the monoidal unit as an empty diagram:

which gives rise to the notion of states and effects, morphisms from 𝐼 and into 𝐼 respectively:

𝑠 𝐴 and 𝑒𝐴

Representing id𝛪 as the empty diagram encodes the unital strictness as follows (where the dashed lines

mean that we do not usually draw them):

𝑓𝐴 𝐵

𝐼
= 𝑓𝐴 𝐵 = 𝑓𝐴 𝐵

𝐼

In any monoidal category, we have the “interchange law”: (𝑔 ∘ 𝑓) ⊗ (𝑖 ⊗ ℎ) = (𝑔 ⊗ 𝑖) ∘ (𝑓 ⊗ ℎ). This is

immediately obvious string-diagrammatically, as can be seen by the following diagram which represents

both sides of the equation:

𝑓 𝑔

ℎ 𝑖

𝐴 𝐵 𝐶

𝐷 𝐸 𝐹

This is one way in which string diagrams make things much simpler compared to the “1-dimensional”

language of pure text.

This syntax is sound and complete for reasoning inmonoidal categories, so long aswe equate diagramsup

to “planar isotopy”, i.e., two diagrams, drawn on the plane, within a boundary rectangle, with all input

and output strings touching the boundary rectangle, are equal if and only if it is possible to transform,

continuously, one into the other by continuously moving around morphisms inside the boundary rect-

angle, disallowing any crossing of strings or boxes, and disallowing any strings attached to the boundary

rectangle from becoming unattached. Then,

Theorem 1.2.5: [JS91, Theorem 1.2]

Twomorphisms are equal in amonoidal category if and only if the two string diagrammatic repres-

entation of these morphisms are equal up to planar isotopy.

1.2.2 Symmetric Monoidal Categories

GivenTheorem1.2.7, itmaybe interesting to consider diagrams inwhich strings are allowed to cross over

each other (at least sometimes). This gives rise to the notion of a symmetric monoidal category:
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Definition 1.2.6: Symmetric Monoidal Category

Amonoidal category𝒞 is a symmetric monoidal category if it has a braiding natural isomorphism 𝜎
with components 𝜎𝛢,𝛣 ∶ 𝐴⊗𝐵 → 𝐵⊗𝐴, which is self-inverse: 𝜎𝛣,𝛢 ∘ 𝜎𝛢,𝛣 = id𝛢⊗𝛣, and satisfies the

hexagon equations

(𝑋 ⊗ 𝑌) ⊗ 𝑍 𝑍 ⊗ (𝑋 ⊗ 𝑌)

𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑍 ⊗ 𝑋) ⊗ 𝑌

𝑋 ⊗ (𝑍 ⊗ 𝑌) (𝑋 ⊗ 𝑍) ⊗ 𝑌

𝜎𝛸⊗𝑌,𝑍

𝛼𝛸,𝑌,𝑍

id𝛸⊗𝜎𝑌,𝑍

𝛼𝑍,𝛸,𝑌

𝛼−1𝛸,𝑍,𝑌

𝜎𝛸,𝑍⊗id𝑌

𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑌 ⊗ 𝑍) ⊗ 𝑋

(𝑋 ⊗ 𝑌) ⊗ 𝑍 𝑌 ⊗ (𝑍 ⊗ 𝑋)

(𝑌 ⊗ 𝑋) ⊗ 𝑍 𝑌 ⊗ (𝑋 ⊗ 𝑍)

𝜎𝛸,𝑌⊗𝑍

𝛼−1𝛸,𝑌,𝑍

𝜎𝛸,𝑌⊗id𝑍

𝛼−1𝑌,𝑍,𝛸

𝛼𝑌,𝛸,𝑍

id𝑌⊗𝜎𝛸,𝑍

for all objects𝑋, 𝑌, 𝑍 of 𝒞.

We represent the braiding 𝜎𝛢,𝛣 in a symmetric monoidal category with the diagram

𝐴

𝐵

The self-inverse property ensures that

𝐴

𝐵
=

𝐴

𝐵
(1.3)

And the hexagon equations ensure that

𝐴

𝐵

𝐶

=

𝐴

𝐵

𝐶

and

𝐴

𝐵

𝐶

=

𝐴

𝐵

𝐶

The natural transformation property ensures that:

𝑓

𝑔

𝐴 𝐵

𝐶 𝐷
=

𝑔

𝑓

𝐴

𝐵𝐶

𝐷

(1.4)

Soundness and completeness for this graphical calculus is thenweakened to just being isotopic; i.e.,
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Theorem 1.2.7: [JS91, Theorem 2.3]

Twomorphisms are equal in a symmetric monoidal category if and only if the two string diagram-

matic representation of thesemorphisms are equal up to isotopy (that is, they are isotopic, or, equi-

valently, isomorphic).

Next, I’ll introduce functor boxes.

1.3 Functor Boxes

Functor boxes allow us to reason string diagrammatically with functors. There are two notions of func-

tor boxes: inside-out functor boxes, and outside-in functor boxes. We shall see the former first – these

are the original notion of functor boxes, as introduced in [Mel06].

1.3.1 Inside-out Functor Boxes

Definition 1.3.1: Functor Box

Let F ∶ 𝒞 → 𝒟 be a functor. An (inside-out) functor box (representing F) is a diagram of the kind

on the left, which is defined to be equal to a diagram on the right.

𝑓F𝐴 F𝐵𝐴 𝐵

F

≔ F𝑓F𝐴 F𝐵
(1.5)

Remark 1.3.2. Note that in Equation 1.5, I start using colours. Yellow and orange demonstrate that

the ambient category is𝒟 and𝒞, respectively. I will often use the notationF ∶ 𝒞 → 𝒟 to demonstrate

which colours denote which ambient category.

We can now see that these behave just like functors, in that they preserve composition, and identit-

ies.

Lemma 1.3.3

Inside-out functor boxes preserve identities. That is, given F ∶ 𝒞 → 𝒟 ,

F𝐴 F𝐴

F

𝐴 = F𝐴

holds.



1.3. FUNCTOR BOXES 14

Proof:

F𝐴 F𝐴

F

𝐴 (1.2)
≔ F𝐴 F𝐴

id𝛢

F

𝐴 𝐴 (1.5)
≔ F𝐴 F𝐴

Fid𝛢

= F𝐴 F𝐴
idF𝛢

(1.2)
≕ F𝐴

�

Lemma 1.3.4

Inside-out functor boxes preserve composition. That is, given F ∶ 𝒞 → 𝒟 ,

F𝐴 F𝐶𝑓 𝐵 𝑔

F

𝐴 𝐶 = F𝐴 F𝐶𝑓 𝑔F𝐵

F

𝐴 𝐵

F

𝐵 𝐶
(1.6)

holds.

Proof:

F𝐴 F𝐶𝑓 𝐵 𝑔

F

𝐴 𝐶 (1.1)
≔ F𝐴 F𝐶𝑔 ∘ 𝑓

F

𝐴 𝐶 (1.5)
≔ F𝐴 F𝐶

F(𝑔 ∘ 𝑓)

= F𝐴 F𝐶
F𝑔 ∘ F𝑓 (1.1)

≕ F𝐴 F𝐶
F𝑓 F𝐵

F𝑔
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(1.5)
≕ F𝐴 F𝐶𝑓 𝑔F𝐵

F

𝐴 𝐵

F

𝐵 𝐶

�

1.3.2 Outside-In Functor Boxes

There is an alternative convention for functor boxes, whichmakes sense when the functor in question is

faithful. These functor boxes go in the opposite direction to the functor:

Definition 1.3.5: Outside-In Functor Boxes

Let F ∶ 𝒞 → 𝒟 be a faithful functor. Then we define,

F𝑓F𝐴 F𝐵𝐴 𝐵
F

≔ 𝐴 𝐵𝑓

this makes sense as long as everything inside the outside-in functor box is indeed in the codomain

of F.

These functor boxes also behave like functors, preserving composition and identities...

F𝑓F𝐴 F𝐵𝐴 𝐶
F

F𝑓 F𝐶 = F𝑔 ∘ F𝑓F𝐴𝐴 𝐶
F

F𝐶 = F(𝑔 ∘ 𝑓)F𝐴𝐴 𝐶
F

F𝐶

≔ 𝑔 ∘ 𝑓𝐴 𝐶 ≔ 𝑓𝐴 𝐶𝑔𝐵

F𝐴𝐴 𝐴
F

≔ F𝐴𝐴 𝐴
F

idF𝛢
F𝐴 = F𝐴𝐴 𝐴

F

Fid𝛢
F𝐴 ≔ 𝐴 𝐴

id𝛢

≔ 𝐴
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Moreover, these are the diagrammatic outer-inverse of a normal functor box:

F𝐴𝐴 𝐴
F

≔ F𝐴𝐴 𝐴
F

idF𝛢
F𝐴 ≔ F𝐴𝐴 𝐴

F

Fid𝛢
F𝐴

1.4 Natural Transformations

Using functor boxes, we can use string-diagrams to represent natural transformations, isomorphisms

between categories, as well as adjunctions between functors. That is what we shall see now.

Definition 1.4.1: Graphical Natural Transformations

Let F,G ∶ 𝒞 → 𝒟 be functors. Then 𝜂 ∶ 𝐹 ⇒ 𝐺 is a natural transformation if for all𝑓 ∶ 𝑋 → 𝑌
in 𝒞,

F

𝑓 𝜂F𝑋 𝑋 𝑌 F𝑌 G𝑌 =

G

𝑓𝜂 𝑋 𝑌F𝑋 G𝑋 G𝑌

noting that we do not write the components.

Definition 1.4.2: Graphical Isomorphism of Categories

Let F ∶ 𝒞 → 𝒟 andG ∶ 𝒟 → 𝒞 be functors. We say that they are isomorphisms of categories if

for all 𝑓 ∶ 𝐴 → 𝐵 in 𝒞 and 𝑔 ∶ 𝐶 → 𝐷 in𝒟,

G
F

𝑓𝐴 𝐵 F𝐵F𝐴GF𝐴 GF𝐵 = 𝑓𝐴 𝐵

F
G

𝑔𝐶 𝐷 G𝐷G𝐶FG𝐶 FG𝐷 = 𝑔𝐶 𝐷

For the following, I am using the semi-circle notation for units and co-units as found in [GZ23].

Definition 1.4.3: Graphical Adjunction

Let F ∶ 𝒞 → 𝒟 andG ∶ 𝒟 → 𝒞 be functors. We say that 𝐹 ⊣ 𝐺, or that 𝐹 is left adjoint to𝐺 if

there exist 𝑒 ∶ id𝒞 ⇒ GF (known as the unit) and 𝜂 ∶ FG ⇒ id𝒟 (known as the co-unit) such that
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for all 𝑓 ∶ 𝐴 → 𝐵 in 𝒞 and 𝑔 ∶ 𝐶 → 𝐷 in𝒟,

𝑒𝑓𝐴 𝐵 GF𝐵 = 𝑒 GF𝐴𝐴 𝑓𝐴 𝐵F𝐴 F𝐵 GF𝐵

F
G

𝜖 𝐶FG𝐶 𝑔 𝐷 = FG𝐶 𝑔 𝜖𝐶 𝐷G𝐶 G𝐷 FG𝐷

G
F

𝐷

𝑒 𝜖G𝐶

G

𝐶 G𝐶FG𝐶GFG𝐶 = G𝐶

𝑒F𝐴

F

GF𝐴 FGF𝐴𝐴 𝜖 F𝐴 = F𝐴
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In this chapter, we will see how we can use string diagrams to reason in arbitrary topoi. To do this, we

will look at how we can reason graphically about each of the component parts: finite limits, cartesian

closedness, and sub-object classifiers. To begin, we will look at finite limits.

2.1 Finite Limits

In this section, I will show how we can reason graphically in categories with finite limits. To do this, I

will first show how we can reason categories with finite products, by invoking Fox’s Theorem. Then,

we shall see that we can extend this, by using functor boxes that represent forgetful functors from slice

categories into their base categories, in order to reason in a category with all finite limits.

2.1.1 Products

We can extend a Theorem, due to Fox [Fox76], as follows

Theorem 2.1.1: Graphical Fox

A symmetric monoidal category 𝒞 is a cartesian category0 if and only if for each𝐴 ∈ Ob𝒞, there

19
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exist morphisms (known as the copy morphisms and deleting morphisms respectively)

𝐴

𝐴
𝐴

and
𝐴

such that

• for each𝐴 ∈ Ob𝒞,

𝐴

𝐴
𝐴 = 𝐴 =

𝐴

𝐴
𝐴

(2.1)

𝐴
𝐴

𝐴

𝐴

𝐴
= 𝐴

𝐴

𝐴
(2.2)

and
𝐴

𝐴
𝐴 𝐴

𝐴

=
𝐴

𝐴

𝐴 𝐴
𝐴

(2.3)

• for each 𝑓 ∶ 𝐴 → 𝐵 in 𝒞,

𝐵
𝐵

𝐵
𝑓𝐴 =

𝑓

𝑓

𝐴
𝐴

𝐴

𝐵

𝐵
(2.4)

and

𝑓𝐴 𝐵 = 𝐴
(2.5)

and

• for each pair of objects {𝐴, 𝐵} ⊆ Ob𝒞,

𝐴 ⊗ 𝐵
𝐴 ⊗ 𝐵

𝐴 ⊗ 𝐵
=

𝐴

𝐵

𝐴
𝐴

𝐵
𝐵 𝐴

𝐵
(2.6)
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and

𝐴 ⊗ 𝐵 =
𝐴

𝐵 (2.7)

Proof: see [Rom24] for various outlines and different versions of this proof. �

Hence, we can use these copying and deleting morphisms to reason using string diagrams in categor-

ies with finite products, as we can use finite products to induce a monoidal structure on the category

(moreover, we may assume, that the products are strict due to Theorem 1.2.3).

An example of this can now be seen in proving, graphically, the universal property of products.

Proposition 2.1.2: Binary Products Universal Property, Graphically

Suppose that 𝒞 has finite products and that

𝑓𝐴
𝐵
𝐶 = 𝑔𝐴 𝐵

(2.8)

and also that

𝑓𝐴
𝐵
𝐶 = ℎ

𝐴 𝐶
(2.9)

then,

𝑓𝐴
𝐵
𝐶 =

𝑔

ℎ

𝐵

𝐶
𝐴

Proof:

𝑓𝐴
𝐵
𝐶 (2.1)= 𝑓𝐴

𝐵
𝐶 (2.5)&(2.7)= 𝑓𝐴

𝐵
𝐶

0That is to say the monoidal structure is given by the product functor and terminal object.
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(2.4)&(2.6)= 𝐴
𝑓

𝑓

𝐶

𝐵

𝐵

𝐶

(2.8)&(2.9)= 𝐴
𝑔

ℎ
𝐶

𝐵

�

2.1.2 Pullbacks and Slice Categories

Let’s now extend the string diagrams of the last subsection in order to reason about categories with all

finite products.

First, recall (see, e.g., [nlab:fcc])

Theorem 2.1.3

A category 𝒞 has all finite limits (i.e., is finitely complete) if and only if 𝒞 has pullbacks and a ter-

minal object.

this gives us the obvious corollary

Corollary 2.1.4

A category 𝒞 has all finite limits if and only if 𝒞 has pullbacks and finite products.

So, we just need to come up with a graphical calculus for categories with pullbacks. In order to do that,

we will use slice categories.

Definition 2.1.5: Slice Category

Let 𝒞 be a category and 𝐴 ∈ Ob𝒞 an object. Then we define a category 𝒞/𝐴 called the slice of 𝒞
over𝐴 as follows:

• objects: an object is a morphism 𝑓 ∶ 𝑋 → 𝐴 in 𝒞;

• morphisms: a morphism 𝑔 ∶ 𝑓1 → 𝑓2, where 𝑓1 ∶ 𝑋1 → 𝐴 and 𝑓2 ∶ 𝑋2 → 𝐴 in 𝒞, is a
morphism 𝑔 ∶ 𝑋1 → 𝑋2 in 𝒞 such that 𝑓2 ∘ 𝑔 = 𝑓1 in 𝒞;

• composition and identities are the same as in 𝒞.

We call 𝒞 the base category.

We care about slice categories because a category 𝒞 has pullbacks if and only if every slice category has

finite products. So, if there is a canonical functor from each slice category into the base category, we can

use a functor box to represent this situation. That is what I will now prove.

Lemma 2.1.6
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𝑍

𝑋 𝑃 𝑋′

𝑌

𝑔 𝛼 𝑔′

𝑓

𝑝1 𝑝2

𝑓′

commutes in 𝒞 if and only if

𝑓′ ∘ 𝑝2 ∘ 𝛼

𝑓 𝑓 ∘ 𝑝1 𝑓′

𝑔 𝛼 𝑔′

𝑝1 𝑝2

commutes in 𝒞/𝑌.

Proof: (⟹ ) First, note that each object in the bottom diagram is indeed an object of 𝒞/𝑌 because

they each are morphisms in 𝒞 with domain 𝑌. Moreover, each morphism in the second diagram is

typed correctly:

• 𝑓 ∘ 𝑔 = 𝑓′ ∘ 𝑔′ = 𝑓′ ∘ 𝑝2 ∘ 𝛼, showing 𝑔 is well-typed;

• 𝑓 ∘ 𝑝1 ∘ 𝛼 = 𝑓
′ ∘ 𝑝2 ∘ 𝛼, showing 𝛼 is well-typed;

• 𝑓′ ∘ 𝑔′ = 𝑓′ ∘ 𝑝2 ∘ 𝛼, showing 𝑔′ is well-typed;

• 𝑓 ∘ 𝑝1 = 𝑓 ∘ 𝑝1, showing 𝑝1 is well-typed; and

• 𝑓′ ∘ 𝑝2 = 𝑓 ∘ 𝑝1, showing 𝑝2 is well-typed.

Hence, everything in the second diagram is typed correctly. It then obviously commutes as the first

diagram does.

(⟸ ) taking 𝑍, 𝑋, and 𝑋′ to be the appropriate domains, we see that the first diagram is correctly

typed. The second diagram shows us immediately that the large top triangle commutes in the first

diagram, so all that needs to be verified is that𝑓∘𝑝1 = 𝑓
′ ∘𝑝2. This holds as 𝑝2 ∶ 𝑓 ∘𝑝1 → 𝑓′ in𝒞/𝑌. �

Corollary 2.1.7

𝒞 has pullbacks if and only if for all𝐴 ∈ Ob𝒞, 𝒞/𝐴 has finite products.

Proof: (⟹ ) Suppose that𝒞 has pullbacks. Then consider some𝒞/𝐴 andmorphisms (of𝒞, objects
of𝒞/𝐴) 𝑓 ∶ 𝑋 → 𝐴 and 𝑔 ∶ 𝑌 → 𝐴. As𝒞 has pullbacks, the pullback of 𝑓 and 𝑔 exists, but any such
unique 𝛼 satisfying the universal property of the pullback of 𝑓 and 𝑔will, by Lemma 2.1.6, automat-

ically satisfy the universal property of the product of 𝑓 and 𝑔 – showing that the binary product of 𝑓
and 𝑔 does indeed exist in 𝒞/𝐴.

For 𝒞/𝐴 to have finite products, it just remains to verify that it has a terminal object. The terminal
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object is id𝛢. To see this, note that given 𝑓 ∶ 𝑋 → 𝐴, there is only one map 𝑔 ∶ 𝑋 → 𝐴 such that

id𝛢 ∘ 𝑔 = 𝑓, namely 𝑓.

(⟸ ) Suppose that for all 𝐴 ∈ Ob𝒞, 𝒞/𝐴 has finite products. Then consider 𝑓 ∶ 𝑋 → 𝐴 and

𝑔 ∶ 𝑌 → 𝐴 in 𝒞. The binary product of these exists in 𝒞/𝐴, and any 𝛼 satisfying the universal

property of this product must also satisfy the universal property of the pullback of 𝑓 and 𝑔 in 𝒞, by
Lemma 2.1.6. �

Now we need some kind of canonical functor from each slice category to the base category in order to

use functor boxes to characterise finite completeness. Luckily there is such a functor.

Definition 2.1.8: Slice Forgetful Functor

Let 𝒞 be a category with 𝐴 ∈ Ob𝒞. Then we can define the forgetful functor𝑈𝛢 ∶ 𝒞/𝐴 → 𝒞 as

follows:

• on objects: 𝑓 ∶ 𝑋 → 𝐴, as an object in 𝒞/𝐴 is mapped to𝑋, an object in 𝒞;

• on morphisms: 𝑔 ∶ 𝑓1 → 𝑓2, as a morphism in 𝒞/𝐴 (with 𝑓1 ∶ 𝑋 → 𝐴 and 𝑓2 ∶ 𝑌 → 𝐴
being objects in 𝒞/𝐴) is mapped to 𝑔 ∶ 𝑋 → 𝑌, a morphism in 𝒞.

Moreover, this functor is faithful and so we can use outside-in functor boxes to represent it.

We also use blue boxes, instead of green to represent themorphisms in the slice category. I.e.,

Definition 2.1.9: Blue Morphism Boxes

Let 𝒞 be a finitely complete category, with slices 𝒞/𝐶 , then for each 𝑓 ∶ 𝐴 → 𝐵 in 𝒞, we define

𝑈𝐶

𝑓𝐴 𝐵𝑔1 𝑔2 ≔ 𝐴 𝐵𝑓 (2.10)

and similarly,

𝑔1 𝑔2𝑓 ≔ 𝑓𝐴 𝐵𝑔1 𝑔2
𝑈𝐶

(2.11)

Remark 2.1.10. One may worry that when we assume that a finitely complete category is strict with

respect to its product structure, that it also follows that the products in the slice category may also be

assumed to be strict. Luckily, however, we can see that the products in the slice categories are always

strict, irrespective of the properties of the base category, as they are defined in terms ofmorphisms, which

are associative and have units anyway.

Another nice property of this forgetful functor can be seen next.
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2.1.3 Discrete Fibrations

In general, it is always possible to expel morphisms from inside-out functor boxes. This can be seen in

the following equality:

F

𝑓𝐴 𝐵F𝐴 F𝐵 =

F

F𝑓𝐴F𝐴 F𝐴 F𝐵 =

F

F𝑓 𝐵F𝐴 F𝐵 F𝐵

However, is is not possible, in general, for inside-out functor boxes to eat morphisms. That is, there may

be no𝐴′ and ℎ such that the following equality holds.

F

𝑓𝐴 F𝐵 𝐵 F𝐵 =

F

ℎ
𝐴 𝐵 F𝐵𝐴′

One of the reasons for this is that the functor may not be surjective (i.e., full and surjective on objects);

theremay not be anymorphism in the domain category tomap onto themorphism in the codomain. We

can generalise surjectivity of functors into a kind of directed surjectivity. This generalisation is known as

the property of being a discrete (op-)fibration. For more on fibrations, see [LR20].

Definition 2.1.11: Discrete Fibration

A functor F ∶ 𝒞 → 𝒟 is a discrete fibration if for each𝐶 ∈ 𝒞,𝐷 ∈ 𝒟, and 𝑔 ∶ 𝐷 → F𝐶 in𝒟, there

is a unique morphism ℎ ∶ 𝐶′ → 𝐶 in 𝒞 such that Fℎ = 𝑔.

Definition 2.1.12: Discrete Op-fibration

A functor F ∶ 𝒞 → 𝒟 is a discrete op-fibration if for each 𝐶 ∈ 𝒞,𝐷 ∈ 𝒟 and 𝑔 ∶ F𝐶 → 𝐷 in𝒟,

there exists a unique morphism ℎ ∶ 𝐶 → 𝐶′ in 𝒞 such that Fℎ = 𝑔.

Graphically, this corresponds to the fact that functor boxes can eat morphisms from the left or right,

depending on whether the functor is a discrete fibration or a discrete op-fibration.

Theorem 2.1.13: Graphical Discrete Fibrations

A functor F ∶ 𝒞 → 𝒟 is a discrete fibration if and only if its inside-out functor box can eat,

uniquely, morphisms on the left. That is, whenever

F

𝑓𝐴 F𝐵 𝐵 F𝐵
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is a morphism, then there exists a unique ℎ such that

F

𝑓𝐴 F𝐵 𝐵 F𝐵 =

F

𝐴 𝐵 F𝐵
ℎ𝐴′

Proof: this is immediate from the fact that

F

𝑓𝐴 F𝐵 𝐵 F𝐵 1.3.3= 𝑓𝐴 F𝐵

�

When a functor is a discrete fibration, I draw its box with a porous left-side, to denote that morphisms

may freely pass over this boundary, like

F

F𝐴 F𝐴𝐴

similarly, when a functor is a discrete op-fibration, we may draw its box with a porous right-side.

Proposition 2.1.14

The forgetful functors from slice categories are discrete fibrations.

Proof: consider a category 𝒞 with slice 𝒞/C ; whenever a morphism like the left hand side exists,

the following equality holds:

𝑈𝐶

𝑓𝐴 𝐵 𝐵𝑔
1.3.3= 𝑓𝐴 𝐵 ≕

𝑈𝐶

𝐴 𝐵𝑓
𝑔𝑔 ∘ 𝑓

as 𝑔 ∘ 𝑓 = 𝑔 ∘ 𝑓. Uniqueness follows by the fact that the functor is faithful. �

So, from now on, I will draw the inside-out functor boxes for the forgetful functors from slice categories

with a porous left side.

One interesting property of faithful discrete fibrations is that they preserve and reflectmonomorphisms;

we will use this later to prove the Fundamental Theorem of Topos Theory.

Proposition 2.1.15: Faithful Discrete Fibrations Preserve/Reflect Monomorphisms

Let F ∶ 𝒞 → 𝒟 be an faithful discrete fibration. Then 𝑓 ∶ 𝑋 → 𝑌 is monic in 𝒞 if and only if F𝑓
is monic in𝒟.
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Proof: the fact that F reflects monomorphisms follows from the fact that it is faithful. So, I will just

show that faithful discrete fibrations preservemonomorphisms. Using colouring 𝒞 and 𝒟 , suppose

that 𝑓 is monic and

F

𝑔1 𝑓𝑍 F𝑋 𝑋 𝑌 F𝑌 =

F

𝑔2 𝑓𝑍 F𝑋 𝑋 𝑌 F𝑌

then, as F is a discrete fibration, there exist (unique) ℎ1 and ℎ2 such that,

F

ℎ1 𝑓𝑍 𝑋 𝑌 F𝑌𝐴 =

F

ℎ2 𝑓𝑍 𝑋 𝑌 F𝑌𝐵

where Fℎ1 = 𝑔1 and Fℎ2 = 𝑔2, and as F is faithful,

ℎ1 𝑓𝑋 𝑌𝐴 = ℎ2 𝑓𝑋 𝑌𝐵

(noting then that we must have that 𝐴 = 𝐵), which implies that ℎ1 = ℎ2, as 𝑓 is monic. But then

𝑔1 = Fℎ1 = Fℎ2 = 𝑔2; i.e., F𝑓 is monic. �

So, in particular, each𝑈𝛢 ∶ 𝒞/𝐴 → 𝒞 preserves and reflects monomorphisms.

2.1.4 Slices of Slices are just Slices of the Base Category

Finally, we can see that we never need to consider slices of slices, by the following proposition.

Proposition 2.1.16

Let 𝑓 ∶ 𝐴 → 𝐵 in 𝒞, then (𝒞/𝐵)/𝑓 is isomorphic to 𝒞/𝐴.

Proof: define a functorF ∶ (𝒞/𝐵)/𝑓 → 𝒞/𝐴 as follows (wherewe have colourings 𝒞 and 𝒞/𝐵 ):

ℎ
𝑋 𝑌𝑔1 𝑔2𝑘1 𝑘2𝑘1 𝑘2

𝑈𝛣
𝑈𝑓

F

≔ ℎ
𝑋 𝑌𝑘1 𝑘2

𝑈𝛢
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and its supposed inverseG ∶ 𝒞/𝐴 → (𝒞/𝐵)/𝑓 as follows:

ℎ
𝑋 𝑌
𝑈𝛢

G

𝑘1𝑘1 𝑘2 𝑘2 ≔ ℎ
𝑋 𝑌
𝑈𝛣

𝑓 ∘ 𝑘1𝑘1 𝑓 ∘ 𝑘2 𝑘2

𝑈𝑓

Nowwe see that

F
G

ℎ
𝑔1 𝑔2𝑔1𝑔1 𝑔2 𝑔2 ≔

F

ℎ
𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2𝑔1𝑔1 𝑔2 𝑔2𝑈𝑓

≔ ℎ
𝑔1 𝑔2

and also that

G
F

ℎ′
𝑘1 𝑘2𝑘1𝑘1 𝑘2 𝑘2 ≔

G

ℎ′
𝑘1𝑘1 𝑘2 𝑘2 ≔ ℎ′

𝑘1 𝑘2

Consequently, F andG induce an isomorphism between (𝒞/𝐵)/𝑓 and 𝒞/𝐴. �

This concludes the evaluation of graphically representing categories with finite products.

2.2 Closed Categories

Given amonoidal category𝒞, we say it is (left or right) closed when there is a canonical object𝐶 for each

pair of objects𝐴 and 𝐵 such that𝐶 somehow represents the collection of morphisms from𝐴 to 𝐵. This

is particularly useful when we want our category to look like Set, where each collection of morphisms is

itself a set, as we do in the case of Topoi. For more information about closure see [EM66]. Formally, we

define left and right closure as follows.

Definition 2.2.1: Left-Closed Monoidal Category

Let ⟨𝒞, ⊗, 𝐼, 𝛼, 𝜆, 𝜌⟩ be a monoidal category. We say that it is left-closed if there exists, for each

𝐴 ∈ Ob𝒞 a functor𝐴 ⊸ ⋅ ∶ 𝒞 → 𝒞 such that it is right adjoint to the functor𝐴 ⊗ ⋅ ∶ 𝒞 → 𝒞.

Remark 2.2.2. Similarly, we say that a monoidal category is right-closed if there is a functor ⋅ ⊸𝐴 ∶ 𝒞 →
𝒞 such that it is right adjoint to the functor ⋅ ⊗ 𝐴 ∶ 𝒞 → 𝒞.

Remark 2.2.3. Any monoidal category that is both left-closed and right-closed is said to be bi-closed.
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2.2.1 With Functor Boxes

Graphically, using functor boxes, we can represent left-closure as follows.

Definition 2.2.4: Left-Closure Using Functor Boxes

Amonoidal category 𝒞 is left-closed if and only if for every𝐴 ∈ Ob𝒞 and 𝑓 ∶ 𝐶 → 𝐵, there exist
natural transformations 𝜆 and ev, and functors𝐴 ⊸ ⋅ such that the following hold (thick wires just

indicate types involving⊸ and have no actual affect on diagrams):

𝑓 𝜆
𝐶𝐵 𝐴 ⊸ (𝐴 ⊗ 𝐶) = 𝜆

𝐵 𝐴 ⊸ (𝐴 ⊗ 𝐵)

𝐴 ⊸ ⋅

𝑓

𝐴

𝐵 𝐶
𝐴 ⊸ (𝐴 ⊗ 𝐶)

(2.12)

𝐴 ⊸ ⋅

𝑓𝐴 ⊸ 𝐵 𝐴 ⊸ 𝐶𝐵 𝐶 ev
𝐶

𝐴

= 𝐴 ⊸ 𝐵 ev
𝐵

𝐴

𝑓 𝐶
(2.13)

𝜆
ev

𝐴

𝐵𝐵

𝐴

𝐴 ⊸ (𝐴 ⊗ 𝐵) =

𝐴

𝐵
(2.14)

𝜆
𝐴 ⊸ 𝐵

𝐴 ⊸ ⋅

𝐴 ⊸ (𝐴 × (𝐴 ⊸ 𝐵)) 𝐴 ⊸ 𝐵
ev
𝐵

𝐴

𝐴 ⊸ 𝐵 = 𝐴 ⊸ 𝐵
(2.15)

Right-closure can be represented in the obviously similar way.

2.2.2 Bastard Cups/Caps and Clasps

In [BS10], a notation for left-closed (or alternative, right-closed)monoidal categories is introduced. This

notation is called “bubble and clasp notation”. I think that this notation is unnecessarily cluttered

[GZ23, p. 71], and so have slightly altered it to remove the “bubbles”1. Moreover, the original nota-

tion has not been proved to be coherent [Wij14, p. 27]. But using the machinery of functor boxes, we

can easily prove coherence for the altered notation here. And I strongly conjecture (but do not prove)

that the original bubble and clasp notation is therefore also coherent.

Let’s now see this altered notation, which I call “bastard cap/cup and clasp notation”2.

1Also strings going in different directions have been replaced with colour!
2These are named after the “bastard spiders” of [CK17], which similarly connect wires of different kinds.
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Definition 2.2.5: Downward Bastard Cups and Caps

Let 𝒞 be a monoidal category. We say it admits downward bastard cups and caps if there exist, for
each {𝐴, 𝐵} ⊆ Ob𝒞, morphisms

𝐵

𝐴
𝐴 and

𝐵
𝐴
𝐴

(2.16)

where
𝐴
𝐵 ≔ 𝐴 ⊸ 𝐵

(so the “clasps” are just typing judgements – and so strings and morphisms may freely move in and

out of them, as long as the typing is still correct) and these morphisms also satisfying the yanking

equations:

= (2.17)

and

= (2.18)

And similarly...

Definition 2.2.6: Upward Bastard Cups and Caps

Let 𝒞 be a monoidal category. We say it admits upward bastard cups and caps if there exist, for
each {𝐴, 𝐵} ⊆ Ob𝒞, morphisms

𝐵

𝐴
𝐴 and

𝐵
𝐴
𝐴

(2.19)

where

𝐴
𝐵

≔ 𝐵 ⊸𝐴

and these morphisms also satisfying the yanking equations:

= (2.20)
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and

= (2.21)

Remark 2.2.7. One thinks of these red (or green) strings as being “in the opposite category”, and so

they send information from right to left, rather than left to right. The black strings are treated as normal

strings of that type, somorphisms can be applied to them (andmorphismsmay slide through the “clasps”

freely, as though they were not there, like in a normal monoidal category).

Theorem 2.2.8: Coherence of Bastard Cups and Caps

A monoidal category 𝒞 has upward bastard cups and caps if and only if it is left-closed. Similarly,

it has downward bastard cups and caps if and only if it is right-closed.

Proof: I will only consider left-closure. Defining

𝐵

𝐴
𝐴

to be the unit and
𝐵
𝐴
𝐴

to be the co-unit of the adjunction immediately yields the equivalence between the functor box and

upward bastard cup/cap notation.

The effect of the functor box is to take a morphism and surround it with clasps. This immediately

yields the naturality conditions as we may pull morphisms freely though claps. Similarly, the true

adjointness conditions are precisely the yanking equations. �

2.2.3 Symmetric Monoidal Closed Categories

In a symmetric category, we can easily see the following proposition (see e.g., [nlab:cmc]).

Proposition 2.2.9

A category symmetric monoidal 𝒞 is bi-closed if and only if it is either left-closed or right-closed.

Moreover, in anybi-closed symmetricmonoidal category,we candefine a (natural) isomorphismbetween

the two kinds of closure. Graphically, this looks very nice, resembling a swap morphism.

Definition 2.2.10
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Let 𝒞 be a biclosed symmetric monoidal category, with objects𝐴 and 𝐵. Then we define

𝐴
𝐵

𝐵
𝐴

≔

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

(2.22)

and

𝐴𝐵
𝐵𝐴

≔
𝐴
𝐵 𝐴

𝐴
𝐴

(2.23)

Theorem 2.2.11

Let 𝒞 be a biclosed symmetricmonoidal category, with object𝐴 andmorphism𝑓 ∶ 𝐵 → 𝐶. Then

the following hold

𝐴
𝐵

𝐵
𝐴

𝐴
𝐵 =

𝐴
𝐵 (2.24)

𝐴𝐵
𝐵𝐴

𝐵
𝐴 =

𝐵
𝐴

𝐴
𝐶

𝐶
𝐴𝑓𝐵 =

𝐴
𝐵

𝐵
𝐴

𝑓 𝐶
(2.25)

𝐴
𝐶

𝐶
𝐴

𝑓𝐵
=

𝐴
𝐵

𝐵
𝐴 𝑓 𝐶

demonstrating that these swapping morphisms are in fact natural isomorphisms.

Proof: I will show Equation 2.24 and Equation 2.25; the other two are similar (in fact you can just

horizontally flip the proofs and swap the red and green strings).

𝐴
𝐵

𝐵
𝐴

𝐴
𝐵

≔

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

𝐴

𝐴
𝐴

𝐴
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=

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

𝐴

𝐴
𝐴

𝐴

(1.4)=

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

𝐴

𝐴
𝐴

𝐴

=

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

𝐴

𝐴
𝐴

𝐴

=

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

𝐴

𝐴
𝐴

𝐴

(1.4)=

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

𝐴

𝐴
𝐴

𝐴

(2.21)=

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

(1.3)=

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

(2.17)=

𝐴
𝐵
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𝐴
𝐶

𝐶
𝐴𝑓𝐵

≔

𝐴
𝐶

𝐴
𝐴

𝐴
𝐴𝑓𝐵

=

𝐴
𝐵

𝐴
𝐴

𝐴
𝐴

𝑓 𝐶

≔

𝐴
𝐵

𝐵
𝐴

𝑓 𝐶

�

This means that when reasoning in a symmetric monoidal category it doesn’t matter which kind of clos-

ure we wish to work with as we can always convert one into another via this isomorphism.

Remark 2.2.12. In the special case where themonoidal structure is given by the product structure of the

category (i.e., it is a cartesian category), we say that the category is cartesian closed, and we usually denote

the (left/right)-closed (up to author preference) as [−]𝛢 instead of𝐴 ⊸ − or − ⊸𝐴.

This concludes the analysis of left and right monoidal closure graphically.

2.3 Sub-object Classifiers

Since a topos is in some sense a generalisation of Set, the sub-object classifier condition allows “subset-

like” reasoning. In particular, the object 𝛺 acts like the set {0, 1} in Set, and t acts like 1 in this set.

Subset/set-like reasoning then follows from the idea that if we can define a morphism that acts like the

characteristic function of set, then we can determine which objects are “members” of others. That is

how the sub-object classifier works. Formally,

Definition 2.3.1: Sub-object Classifier

Let 𝒞 be a category with a terminal object 1. A sub-object classifier of 𝒞 is a pair ⟨𝛺, t⟩, where

• 𝛺 is inOb𝒞; and

• t ∶ 1 → 𝛺 is a morphism in 𝒞,
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such that for everymonic𝑚 ∶ 𝐴 → 𝑋 in𝒞, there exists a uniquemorphism 𝜒𝑚 ∶ 𝑋 → 𝛺 such that

𝐴 1

𝑋 𝛺

!

𝑚 t

𝜒𝑚

commutes, and is a pullback square.

Remark 2.3.2. We call 𝜒𝑚 the characteristic morphism of𝑚.

I am going to give graphical conditions for sub-object classifiers in arbitrary categories (with a terminal

object). As such the slices in general will not have finite products. However, I will use diagrams to rep-

resent a partial monoidal structure induced by those products that do exist. Some care will be needed to

reason in these kinds of categories. In particular, we can only form the monoidal product 𝑓 ⊗ 𝑔 if both
the monoidal product of the domain and codomain are known to exist. And as such, the vertical com-

position of two strings is an existence claim that the monoidal product of the two objects represented by

the strings exist.

In order to give the graphical conditions for sub-object classifiers in full generality, we will need the exist-

ence of certainmorphisms. Thesemorphismswill be used here – laterwe shall see that they automatically

exist in any categorywithfinite products, and thuswill be discharged after giving the graphical conditions

for sub-object classifiers. Here they are:

Definition 2.3.3

Special morphism’s properties.

For every𝐴 ∈ Ob𝒞,

𝐴
t ∘ !𝛢

t

t ∘ !𝛢

(2.26)

exists in 𝒞/𝛺. Moreover, the following equality holds:

t ∘ !𝛢 𝐴
t

t ∘ !𝛢

=
t ∘ !𝛢 (2.27)

Now we can see the full graphical conditions for categories with sub-object classifiers.

Theorem 2.3.4: Graphical Sub-object Classifiers

A category 𝒞 , with a terminal object 1, has a sub-object classifier ⟨𝛺, t⟩ if and only if
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• 𝒞 has “special morphisms” in 𝒞/𝛺 ;

• if 𝑓 ∶ 𝐴 → 𝐵 is monic in 𝒞, then there exists 𝜒𝑓 ∶ 𝐵 → 𝛺 in 𝒞 such that

𝐴 𝐵𝑓 =

𝑈𝛺

𝐴 𝐵
t

𝜒𝑓
(2.28)

holds; and

• for every 𝑓 and 𝑔 in 𝒞, if there are maps 𝑥 and 𝑦 such that

𝑈𝛺

𝑓
t

𝐵 𝐴 =

𝑈𝛺

𝑔
t

𝐵′ 𝐴𝑥𝐵

and

𝑈𝛺

𝑔
t

𝐵′ 𝐴 =

𝑈𝛺

𝑓
t

𝐵 𝐴𝑦𝐵′

then 𝑓 = 𝑔.

Proof: (⟹ ) For the first condition, note that the following is a pullback square for each𝐴 inOb𝒞:

𝐴 1

𝐴 𝛺

!𝛢⌟

id𝛢 t

t∘!𝛢

which implies that the product t ∘ !𝛢 × t exists in 𝒞/𝛺. Then we can define the “special morphism”

on 𝐴 to be ⟨idt∘!𝛢 , !𝛢⟩ ∶ t ∘ !𝛢 → t ∘ !𝛢 × t, demonstrating its existence. Then the required property

can be demonstrated by the following:

(idt∘!𝛢 × t) ∘ ⟨idt∘!𝛢 , !𝛢⟩ = ⟨idt∘!𝛢 ∘ idt∘!𝛢 , t ∘ !𝛢⟩ = idt∘!𝛢 × id𝛺 = idt∘!𝛢

demonstrating the required property. So, the “special morphisms” exist.

For the second condition, suppose 𝑓 ∶ 𝐴 → 𝐵 is monic. Then there exists a unique 𝜒𝑓 ∶ 𝐵 → 𝛺 such
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that 𝜒𝑓 ∘ 𝑓 = t ∘ !𝛢. Moreover, 𝑓makes the following diagram commute (in 𝒞/𝛺):

𝜒𝑓 × t = t ∘ !𝛢 = 𝜒𝑓 ∘ 𝑓

𝜒𝑓 t

𝜒𝑓 𝜒𝑓 × id𝛺 = 𝜒𝑓 id𝛺

𝑓=𝜋
𝜒𝑓×t

1 !𝛢=𝜋
𝜒𝑓×t

2

id𝛣=id𝜒𝑓
t

id𝜒𝑓
=id𝛣 𝜒𝑓

and by the universal property of products, we obtain that 𝑓 = id𝜒𝑓 × t in 𝒞/𝛺, and so,

𝐴 𝐵𝑓 ≕ 𝐴 𝐵𝑓
𝜒𝑓

𝜒𝑓

t

𝑈𝛺

=

𝑈𝛺

𝐴 𝐵
t

𝜒𝑓

For the third condition, note that 𝑥 and 𝑦 are isomorphisms. This is because

𝑈𝛺

𝑓
t

𝐵 𝐴
and

𝑈𝛺

𝑔
t

𝐵′ 𝐴

are both monic (because t is monic), and so as

𝑈𝛺

𝑓
t

𝐵 𝐴 =

𝑈𝛺

𝑓
t

𝐵 𝐴𝑦𝐵′𝑥𝐵

and

𝑈𝛺

𝑔
t

𝐵′ 𝐴 =

𝑈𝛺

𝑔
t

𝐵′ 𝐴𝑥𝐵𝑦𝐵′

we must have that 𝑥 ∘ 𝑦 and 𝑦 ∘ 𝑥 are the respective identities.
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So, if we define 𝑓′ to be the morphism classified by 𝑓 and 𝑔′ by 𝑔, we must have that

𝐵′

𝐵 1

𝐴 𝛺

𝑦

!𝛣′

𝑔′

!𝛣

𝑓′ t

𝑓

commutes, and as 𝑦 is an isomorphism, and the inner square is a pullback square, the outer square

must also be a pullback square; and therefore 𝑓must be the classifyingmorphism for 𝑔′, whichmeans

that 𝑓 = 𝑔, as the classifying morphisms are unique.

(⟸ ) Suppose 𝑓 ∶ 𝐴 → 𝐵 is monic. Then, there exists 𝜒𝑓 ∶ 𝐵 → 𝛺 in 𝒞 such that

𝐴 𝐵𝑓 (2.28)=

𝑈𝛺

𝐴 𝐵
t

𝜒𝑓
(2.29)

and so

𝐴 𝐵𝑓 𝜒𝑓 𝛺 = 𝐴 𝐵 𝛺
𝜒𝑓
t

𝜒𝑓

𝑈𝛺𝑈𝛺

(1.6)= 𝐴 𝛺
𝜒𝑓
t

𝑈𝛺

(1.6)= 𝐴 𝛺
𝜒𝑓
t

t

𝑈𝛺𝑈𝛺

= 𝐴
t
𝛺

and to see that the square

𝐴 1

𝐵 𝛺

!𝛢

𝑓 t

𝜒𝑓

is a pullback, consider a morphism 𝑔 ∶ 𝐶 → 𝐵 in 𝒞, and suppose that 𝜒𝑓 ∘ 𝑔 = t ∘ !𝐶. Then, for this

square to be a pullback, we just require the existence of a 𝑢 ∶ 𝐶 → 𝐴 such that 𝑓 ∘ 𝑢 = 𝑔.2
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Consider the following:

𝐴
𝑔

t ∘ !𝐶

𝜒𝑓

t

𝐶

t ∘ !𝐶

𝑈𝛺

𝐶

I will show that this is the required unique 𝑢.

To see that it has the desired property, consider:

𝐴
𝐶

𝑔
t ∘ !𝐶

𝜒𝑓

t

𝐶 𝑓 𝐵

t ∘ !𝐶

𝑈𝛺

(2.29)= 𝐴
𝐶

𝑔
t ∘ !𝐶

𝜒𝑓

t

𝐶 𝐵

t ∘ !𝐶 𝜒𝑓

t

𝑈𝛺𝑈𝛺

(1.6)= 𝐴t ∘ !𝐶

𝜒𝑓

t

𝐶

t ∘ !𝐶

𝑈𝛺

𝐶

𝑔
(2.27)= 𝐴𝑔t ∘ !𝐶 𝜒𝑓𝐶

𝑈𝛺

= 𝐴𝑔𝐶
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Finally to see that 𝜒𝑓 is the unique morphism with the above properties, suppose that

𝐴 1

𝐵 𝛺

!𝛢⌟

𝑓 t

ℎ

is a pullback square. Then,

𝑈𝛺

𝐴 𝐵
t

ℎ

is the unique map making

ℎ ℎ × t = ℎ ∘ 𝑓 = t ∘ !𝛢 t

ℎ ℎ × id𝛺 = ℎ id𝛺

idℎ=id𝛣

𝜋ℎ×t1 =𝑓 𝜋ℎ×t2 =!𝛢

t

idℎ=id𝛣 ℎ

commute in 𝒞/𝛺, which is by Lemma 2.1.6, the unique map making

𝐴

𝐵 𝐵 𝛺

𝛺

id𝛣∘𝑓=𝑓 t∘!𝛢

ℎ

id𝛣 ℎ

id𝛺

commute in 𝒞. Clearly 𝑓makes this diagram commute and so,

𝐴 𝐵𝑓 =

𝑈𝛺

𝐴 𝐵
t

ℎ
(2.29)=

𝑈𝛺

𝐴 𝐵
t

𝜒𝑓

which implies that ℎ = 𝜒𝑓, by the third condition, – in other words, 𝜒𝑓 is the unique morphism with

these properties. �

This concludes the graphical analysis of sub-object classifiers. Now we can represent topoi graphic-

ally.

2Note that !𝛢 ∘ 𝑢 = !𝐶 follows trivially for any 𝑢 ∶ 𝐶 → 𝐴. Similarly, any 𝑢 such that 𝑓 ∘ 𝑢 = 𝑔must be unique,
as if 𝑓 ∘ 𝑢′ = 𝑔, then as 𝑓 is monic, 𝑢 = 𝑢′.
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2.4 Topoi

Definition 2.4.1: Topos

A topos is a cartesian closed category with finite limits and a sub-object classifier.

Before I give the exact graphical calculus for topoi, I will first prove that we never need to worry about

“special morphisms” in the case of topoi.

Proposition 2.4.2

A category𝒞 (with a terminal object 1, and amorphism t ∶ 1 → 𝛺) has the product𝐴×𝐴 for each

𝐴 ∈ Ob𝒞, if and only if 𝒞 has “special morphisms” and

𝐴
t ∘ !𝛢

t

t ∘ !𝛢

=
t ∘ !𝛢

t ∘ !𝛢

t ∘ !𝛢 !𝛢
t

(2.30)

holds in 𝒞/𝛺 .

Proof: in order for the equality Equation 2.30 to hold, we need the products t ∘ !𝛢 ×t and t ∘ !𝛢 ×t ∘ !𝛢
to exist in𝒞/𝛺. The former always exists, as the pullback of t ∘ !𝛢 and t always exists by the following

pullback square:

𝐴 𝐴

1 𝛺

id𝛢⌟

!𝛢 t∘!𝛢

t

and similarly, the product t ∘ !𝛢 × t ∘ !𝛢 exists in𝒞 if and only if the pullback of t ∘ !𝛢 with itself exists.

I.e., the following is a pullback square:

𝑃 𝐴

𝐴 𝛺

⌟2פּ

1פּ t∘!𝛢

t∘!𝛢

and it is not hard to see that 𝑃 together with 1פּ and 2פּ must be the product of𝐴 and𝐴 in 𝒞. �

Hence, we may conclude,
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Theorem 2.4.3: Topoi, Graphically

A category 𝒞 is a topos if and only if its string diagrams admit:

• copy and deleting maps, as given by Fox’s Theorem;

• products in each of the slice category forgetful functor boxes;

• upward/downward bastard caps/cups; and

• the latter two conditions of Theorem 2.3.4 are satisfied.
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We shall now see the Fundamental Theorem of Topos Theory [Fre72, p. 24]. It is in two parts. The first

part, which we shall see in the next section, says that in a topos, each slice category is also a topos. The

second part says that there is a canonical functor, called the “pullback functor”, between each𝒯/𝐵 and

𝒯/𝐴 given a morphism 𝑓 ∶ 𝐴 → 𝐵 in the base category𝒯, which is also a topos, and that this functor

has left and right adjoints.

The proofwill be done entirely using string diagrams, and in places, which I shall highlight, will bemuch

simpler than the non-graphical alternatives.

3.1 Slices of Topoi are Topoi

For the first part of the Fundamental Theorem of Topos Theory, to show that each slice category is a

topos, I will show, in turn, that each slice category of a topos has finite limits, a sub-object classifier, and

exponentials.

3.1.1 Finite Limits

This method of proving that the slice of each topos is finitely complete is unique.

By Proposition 2.1.16, we can see that

Lemma 3.1.1: Slices of Topoi are Finitely Complete

When 𝒞 is a topos, every slice category 𝒞/𝐴 of 𝒞 if finitely complete.

43
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Proof: consider a slice category 𝒞/𝐵 of 𝒞. We need to show that its slice categories all have finite

products, by Corollary 2.1.7. But if we consider a slice category (𝒞/𝐵)/𝑓 of 𝒞/𝐵 with 𝑓 ∶ 𝐴 → 𝐵
in 𝒞, then we see that 𝒞/𝐴 ≅ (𝒞/𝐵)/𝑓 by Proposition 2.1.16. But we already know that 𝒞/𝐴 has

all finite products, as 𝒞 is a topos, so (𝒞/𝐵)/𝑓 must have all finite products too. Graphically, this

amounts to showing that, withG ∶ 𝒞/𝐴 → (𝒞/𝐵)/𝑓 , from Proposition 2.1.16, that defining

𝑔
≔

𝑔 × 𝑔𝑔
≔

𝑔 × 𝑔𝑔

G

𝑔

𝑔
≔

𝑔 𝑔 id𝑓 ≔
𝑔

G

𝑔 id𝑓 id𝑓𝑔
=

𝑔

G

id𝑓𝑔

and

ℎ1

ℎ2

𝑔1

𝑔3

𝑔2

𝑔4
≔

𝑔1 × 𝑔3 𝑔2 × 𝑔4ℎ1 × ℎ2 ≔

G

ℎ1

ℎ2

𝑔1 𝑔2

𝑔3 𝑔4

𝑔1 × 𝑔3 𝑔2 × 𝑔4

tells us that eqs. (2.1) to (2.7) are satisfied, as per Fox’s Theorem (Theorem 2.1.1). This is easy to see,

and follows by simple compositionality of functor boxes. �

Nowwe can examine sub-object classifiers in slice categories.
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3.1.2 Sub-object Classifier

In order to prove that each slice of a topos has a sub-object classifier, we need away to “colour change” the

forgetful functors from slice category’s boxes; so that’s what wewill prove first. Thismethod is a unique,

to my knowledge, way of proving that each slice of a topos has a sub-object classifier, which arises from

staying within string-diagrammatic constraints.

Recall

Lemma 3.1.2: Pullback Lemma

Let𝒞 be a category. Then suppose the following commutes, and the right-hand square is a pullback

𝐹 𝐸 𝐷

𝐴 𝐵 𝐶

𝑓′

ℎ″

𝑔′
⌟

ℎ′ ℎ

𝑓 𝑔

then the left-hand square is a pullback if and only if the outer rectangle is.

Proof: see [pwik:pl] or [Gol84, p. 67]. �

Proposition 3.1.3: Pullback Lemma, Graphically

Define

𝐸 𝐵
ℎ′ ≔

𝑈𝐶

𝐸 𝐵
𝑔
ℎ

then if either the pullback of 𝑓 and ℎ′, or the pullback of 𝑔 ∘ 𝑓 and ℎ exist in 𝒞, we have

𝑈𝐶

𝐹 𝐷
𝑔 ∘ 𝑓
ℎ =

𝑈𝛣

𝐹 𝐸
𝑓
ℎ′

𝑈𝐶

𝐷
𝑔
ℎ (3.1)

and

𝑈𝐶

𝐹 𝐴
𝑔 ∘ 𝑓
ℎ =

𝑈𝛣

𝐹 𝐴
𝑓
ℎ′ (3.2)

Proof: using Lemma 3.1.2, the existence of ℎ′ ensures that the pullback of 𝑔 and ℎ exists. Moreover,

if either the pullback of 𝑓 and ℎ′ or 𝑔 ∘ 𝑓 and ℎ exist, then both exist, by Lemma 3.1.2. Hence, we

see that 𝑔,ℎ2פּ is the left-hand side of Equation 3.1, and 𝑔′ ∘ 𝑓′ is the right-hand side, demonstrating the

equality. Similarly, we see that 𝑔,ℎ1פּ is the left-hand side of Equation 3.2, and ℎ″ is the right-hand side,
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again, demonstrating the equality. �

Lemma 3.1.4: Slices of Topoi have Sub-object Classifiers

Each slice 𝒞/𝐴 of a topos 𝒞 has a sub-object classifier.

Proof: consider the slice 𝒞/𝐴 of 𝒞 and a monomorphism (in 𝒞/𝐴)

𝑈𝛢

ℎ
𝑋 𝑌𝑔1 𝑔2

I will show that the sub-object classifier in𝒞/𝐴 is 𝜋𝛺×𝛢2 , and the truth morphism is t × id𝛢 (which we

know exists by previous subsection).

By Proposition 2.1.15, as𝑈𝛢 is a discrete fibration, ℎ ∶ 𝑋 → 𝑌must be monic in 𝒞. Therefore, there

must be a classifying morphism 𝜒ℎ such that

𝑋 𝑌
ℎ =

𝑈𝛺

𝑋 𝑌
𝜒ℎ
t

with colouring 𝒞/𝛺 .

Then, we can use the Graphical Pullback Lemma to show that ℎ can be colour-changed from being

a morphism in the slice over 𝒞/𝛺 to the slice over 𝒞/(𝛺 × 𝐴) , which then tells us that 𝒞/𝐴 has a

sub-object classifier via the isomorphism 𝒞/(𝛺 × 𝐴) ≅ (𝒞/𝐴)/𝜋𝛺×𝛢2 .

In order to the Graphical Pullback Lemma, first note that

𝐴
t
𝛺

= 𝐴
t
𝛺

= 𝐴

𝑈𝛺

𝛺
𝐴t

𝜋𝛺×𝛢1

by the definition of what it means to classify a morphism, and then as the projection map is monic,

we conclude that

𝐴
t
𝛺

= 𝐴

𝑈𝛺

𝛺
𝐴t

𝜋𝛺×𝛢1
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and so, by Proposition 3.1.3 The Graphical Pullback Lemma,

𝑋

𝑈𝛺

t

𝜋𝛺×𝛢1 ∘ ⟨𝜒ℎ, 𝑔2⟩ = 𝜒ℎ 𝑌 = 𝑋

𝑈𝛺×𝛢

t × id𝛢
⟨𝜒ℎ, 𝑔2⟩ 𝑌

(3.3)

Hence, via the isomorphismG ∶ 𝒞/(𝛺 × 𝐴) ≅ (𝒞/𝐴)/𝜋𝛺×𝛢2 given in Proposition 2.1.16, 𝒞/𝐴must

have a sub-object classifier, 𝜋𝛺×𝛢2 , with truth morphism t × id𝛢. Explicitly, we can see this as follows

ℎ
𝑔1 𝑔2 ≔

𝑔1 𝑔2

𝑈𝜋𝛺×𝛢2

ℎ
t × 𝑔1 t × 𝑔2

≕
𝑔1 𝑔2t × 𝑔1 t × 𝑔2

𝑈𝜋𝛺×𝛢2

G

𝑈𝛺×𝛢

ℎ
𝑋 𝑌t × 𝑔1 t × 𝑔2

(3.3)=
𝑔1 𝑔2t × 𝑔1 t × 𝑔2

𝑈𝜋𝛺×𝛢2

G

𝑈𝛺×𝛢

𝑋 𝑌t × 𝑔1 t × 𝑔2

𝑈𝛺×𝛢

t × id𝛢
⟨𝜒ℎ, 𝑔2⟩

=
𝑔1 𝑔2t × 𝑔1 t × 𝑔2

𝑈𝜋𝛺×𝛢2

G

t × id𝛢
⟨𝜒ℎ, 𝑔2⟩

3.1.1≕
𝑔1 𝑔2

𝑈𝜋𝛺×𝛢2

t × id𝛢
⟨𝜒ℎ, 𝑔2⟩

�

3.1.3 Exponentials

Lemma 3.1.5

Let 𝒞 be a topos, then each slice category 𝒞/𝐴 has exponentials.

Proof: omitted. �

Theproof is omittedhere because theuse of stringdiagramsdoes not add anything. It is perfectly possible
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to encode, for example, the proof in [MM94], in string diagrams. But what ends up happening is still a

diagram chase after all.

This is certainly a place for future work. I conjecture that if string diagrams are to aid the proof in any

way, then a more explicit construction such as [Joh14, Theorem 1.42] would perhaps be more useful.

But, this proof would currently go too far afield, using partial morphisms.

With this Lemma, we can conclude

Theorem 3.1.6: The Fundamental Theorem of Topos Theory, Part I

Let 𝒞 be a topos, then each slice 𝒞/𝐴 is also a topos.

Next, we will prove part II.

3.2 Pullback Functor has Left and Right Adjoints

In this section, wewill see the second part of the Fundamental Theorem. It asserts that a certain functor,

the pullback functor, introduced next, has both left and right adjoints. The constructions of these two

functors, are, inmy opinion,much simpler than those in the literature, owing to the string diagrammatic

descriptions. This is particularly true in the case of the right adjoint – the dependent product functor.

I strongly recommend the reader compares the constructions here with those in [MM94, p. 193, The-

orem 2].

3.2.1 Pullback Functor

This is the functor which given 𝑓 ∶ 𝐴 → 𝐵, intuitively takes an object 𝑔1 of a slice category over𝐵 to the

pullback with 𝑓.

Definition 3.2.1: Pullback Functor

Let 𝑓 ∶ 𝐴 → 𝐵 in a topos 𝒞 , then this induces a functor 𝑓∗ ∶ 𝒞/𝐵 → 𝒞/𝐴 .

ℎ

𝑈𝛣

𝑓∗

𝑌𝑋𝑔1 𝑔2ּפ𝑔1,𝑓2 𝑔2,𝑓2פּ ≔
ℎ

𝑈𝛢

𝑔1,𝑓2פּ 𝑔2,𝑓2𝑋פּ ×𝑔1,𝑓𝐴 𝑌 ×𝑔2,𝑓𝐴

𝑈𝛣

𝑓

𝑔1 𝑔2

3.2.2 Dependent Sum Functor

First, we shall see the left adjoint, which is known as the “dependent sum” functor.

Definition 3.2.2: Dependent Sum Functor
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Given 𝑓 ∶ 𝐴 → 𝐵 in a topos 𝒞, we have 𝛴𝑓 ∶ 𝒞/𝐴 → 𝒞/𝐵 .

ℎ

𝛴𝑓

𝑔1 𝑔2𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2 ≔ ℎ
𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2

As we can see, this intuitively just lifts a morphism from 𝒞/𝐴 to 𝒞/𝐵.

Lemma 3.2.3

Let 𝒞 be a topos with morphism 𝑓 ∶ 𝐴 → 𝐵. Then 𝛴𝑓 ⊣ 𝑓
∗.

Proof: fix a topos 𝒞 , 𝑓 ∶ 𝐴 → 𝐵 in 𝒞, and slice categories 𝒞/𝐴 and 𝒞/𝐵 . Then the claim is that

(given 𝑔1 ∶ 𝑋 → 𝐴 and ℎ1 ∶ 𝑌 → 𝐵)

𝑈𝛢

𝑈𝛣

𝑋 𝑓 ∘ 𝑔1
𝑔1

𝑋 ×𝑔1∘𝑓,𝑓𝐴 𝑔1∘𝑓,𝑓2פּ
𝑓

𝑔1
and

ℎ1

𝑓

are the unit and counit of the adjunction, respectively.

To see this, first note that

ℎ

𝛴𝑓

𝑔1 𝑔2𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2

𝑓∗

𝑓∘𝑔1,𝑓פ𝑓∘𝑔2,𝑓ּפּ ≔ ℎ
𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2

𝑓∗

𝑓∘𝑔1,𝑓פ𝑓∘𝑔2,𝑓ּפּ

≔

𝑈𝛢

𝑈𝛣

ℎ
𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2

𝑓
𝑋 ×𝑔1∘𝑓,𝑓𝐴 𝑌 ×𝑔2∘𝑓,𝑓𝐴ּפ𝑔1∘𝑓,𝑓2 𝑔2∘𝑓,𝑓2פּ
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so we can see

𝑈𝛢

𝑈𝛣

𝑌𝑔1 𝑓 ∘ 𝑔2
𝑔2

𝑌 ×𝑔2∘𝑓,𝑓𝐴 𝑔2∘𝑓,𝑓2פּ
𝑓ℎ

𝑔2

≕

𝑈𝛢

𝑈𝛣

𝑌𝑔1 𝑓 ∘ 𝑔2
𝑔2

𝑌 ×𝑔2∘𝑓,𝑓𝐴 𝑔2∘𝑓,𝑓2פּ
𝑓ℎ

𝑈𝛢

𝑈𝛣

𝑓 ∘ 𝑔1𝑋 𝑌 𝑔2𝑓 ∘ 𝑔2

1.3.4=

𝑈𝛢

𝑈𝛣

𝑋𝑔1 𝑓 ∘ 𝑔2
𝑔2

𝑌 ×𝑔2∘𝑓,𝑓𝐴 𝑔2∘𝑓,𝑓2פּ
𝑓ℎ

𝑓 ∘ 𝑔1

(2.4)=

𝑈𝛢

𝑈𝛣

𝑋𝑔1 𝑓 ∘ 𝑔1

ℎ
𝑓 ∘ 𝑔2 𝑔2

ℎ
𝑓 ∘ 𝑔2

𝑌 ×𝑔2∘𝑓,𝑓𝐴 𝑔2∘𝑓,𝑓2פּ
𝑓

1.3.4=

𝑈𝛢

𝑈𝛣

𝑋𝑔1 𝑓 ∘ 𝑔1

𝑔2 ∘ ℎ
𝑓

ℎ
𝑓 ∘ 𝑔2

𝑌 ×𝑔2∘𝑓,𝑓𝐴 𝑔2∘𝑓,𝑓2פּ
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=

𝑈𝛢

𝑈𝛣

𝑋𝑔1 𝑓 ∘ 𝑔1
𝑔1

𝑓

ℎ
𝑓 ∘ 𝑔2

𝑌 ×𝑔2∘𝑓,𝑓𝐴 𝑔2∘𝑓,𝑓2פּ

1.3.4=

𝑈𝛢

𝑈𝛣

ℎ
𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2

𝑓
𝑋 ×𝑔1∘𝑓,𝑓𝐴 𝑌 ×𝑔2∘𝑓,𝑓𝐴 𝑔2∘𝑓,𝑓2פּ

𝑈𝛢

𝑈𝛣

𝑋 𝑋 ×𝑔1∘𝑓,𝑓𝐴𝑔1 𝑔1∘𝑓,𝑓2𝑓פּ ∘ 𝑔1
𝑔1

𝑓

Establishing the first required identity for the adjunction.

For the second, note that

ℎ
𝑔1 𝑔2ּפ𝑔1,𝑓2 𝑔2,𝑓2𝑓פּ ∘ 𝑔1,𝑓2פּ 𝑓 ∘ 𝑔2,𝑓2פּ

𝑓∗
𝛴𝑓

≔ 𝑓 ∘ 𝑔1,𝑓2פּ 𝑓 ∘ 𝑔2,𝑓2פּ

𝛴𝑓

ℎ
𝑈𝛢

𝑋 ×𝑔1,𝑓𝐴 𝑌 ×𝑔2,𝑓𝐴

𝑈𝛣

𝑓

𝑔1 𝑔2

𝑔1,𝑓2פּ 𝑔2,𝑓2פּ

≔ 𝑓 ∘ 𝑔1,𝑓2פּ 𝑓 ∘ 𝑔2,𝑓2פּ

ℎ
𝑈𝛣

𝑋 ×𝑔1,𝑓𝐴 𝑌 ×𝑔2,𝑓𝐴

𝑈𝛣

𝑓

𝑔1 𝑔2

=

ℎ

𝑓

𝑔1 𝑔2
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and then we have

ℎ

𝑓

𝑔1 𝑔2

=

ℎ

𝑓

𝑔1 𝑔2

demonstrating the second required equality for the adjunction.

For the third, we have

𝑈𝛢

𝑈𝛣

𝑋 ×𝑔1,𝑓𝐴ּפ𝑔1,𝑓2 𝑓 ∘ 𝑔1,𝑓2פּ

𝑔1,𝑓2פּ
𝑓

𝑓∗

𝑓

𝑔1
𝑔1,𝑓2פּ

≔

𝑈𝛢

𝑈𝛣

𝑋 ×𝑔1,𝑓𝐴ּפ𝑔1,𝑓2 𝑓 ∘ 𝑔1,𝑓2פּ

𝑔1,𝑓2פּ
𝑓

𝑔1,𝑓2פּ

𝑈𝛢

𝑈𝛣

𝑔1
𝑓

𝑓

which, by expanding the definition of 𝑔1,𝑓2פּ , is equal to

𝑈𝛢

𝑈𝛣

𝑋 ×𝑔1,𝑓𝐴ּפ𝑔1,𝑓2 𝑔1,𝑓2פּ

𝑈𝛢

𝑈𝛣

𝑔1
𝑓

𝑓

𝑔1

𝑓
1.3.4=

𝑈𝛢

𝑈𝛣

𝑋 ×𝑔1,𝑓𝐴ּפ𝑔1,𝑓2 𝑔1,𝑓2פּ
𝑔1

𝑓

(2.1)&(2.5)=

𝑈𝛢

𝑈𝛣

𝑋 ×𝑔1,𝑓𝐴ּפ𝑔1,𝑓2 𝑔1,𝑓2פּ
𝑔1

𝑓
1.3.3=

𝑔1,𝑓2פּ

which demonstrates the third required equality.
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Finally,

𝛴𝑓

𝑈𝛢

𝑈𝛣

𝑔1𝑓 ∘ 𝑔1 𝑋 𝑓 ∘ 𝑔1

𝑔1
𝑓 𝑓

𝑓 ∘ 𝑔1

≔

𝑈𝛣

𝑈𝛣

𝑓 ∘ 𝑔1 𝑋 𝑓 ∘ 𝑔1

𝑔1
𝑓 𝑓

𝑓 ∘ 𝑔1

=
𝑓 ∘ 𝑔1

𝑔1
𝑓

(2.5)=
𝑓 ∘ 𝑔1 (2.1)=

𝑓 ∘ 𝑔1

demonstrating the last required equality. �

3.2.3 Dependent Product Functor

Nowwe can see the right adjoint, the “dependent product” functor.

Definition 3.2.4: Dependent Product Functor

Given 𝑓 ∶ 𝐴 → 𝐵 in a topos 𝒞 , we have𝛱𝑓 ∶ 𝒞/𝐴 → 𝒞/𝐵 .

𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2

𝛱𝑓

ℎ
𝑌𝑋

𝑈𝛢
𝑔1 𝑔2

𝑓 𝑓 ≔ ℎ
𝑌𝑋

𝑈𝛣
𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2
𝑓
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Again, this functor intuitively just lifts each morphism in 𝒞/𝐴 to one in 𝒞/𝐵.

Lemma 3.2.5

Let 𝒞 be a topos with morphism 𝑓 ∶ 𝐴 → 𝐵. Then 𝑓∗ ⊣ 𝛱𝑓.

Proof: fix a topos 𝒞 , 𝑓 ∶ 𝐴 → 𝐵 in 𝒞, and slice categories 𝒞/𝐴 and 𝒞/𝐵 . Then the claim is that

(given 𝑔1 ∶ 𝑌 → 𝐵 and ℎ1 ∶ 𝑋 → 𝐴)

𝑔1
𝑓
𝑓

and

𝑓 ∘ ℎ1
𝑓
𝑓

𝑈𝛣

𝑈𝛢

ℎ1𝑋ּפ(𝑓∘ℎ1)
𝑓,𝑓

2

are the unit and counit of the adjunction, respectively.

To see this, first note that

ℎ

𝑓∗

𝑔1 𝑔2ּפ𝑔1,𝑓2 𝑔2,𝑓2פּ

𝛱𝑓

𝑓 ∘ 𝑔1,𝑓2פּ 𝑓 ∘ 𝑔2,𝑓2פּ
𝑓 𝑓

≔
𝑔1,𝑓2פּ

𝛱𝑓

𝑓 ∘ 𝑔1,𝑓2פּ 𝑓 ∘ 𝑔2,𝑓2פּ
ℎ

𝑈𝛢

𝑋 ×𝑔1,𝑓𝐴 𝑌 ×𝑔2,𝑓𝐴

𝑈𝛣

𝑓

𝑔1 𝑔2
𝑔2,𝑓2פּ

𝑓 𝑓

≔
𝑓 ∘ 𝑔1,𝑓2פּ 𝑓 ∘ 𝑔2,𝑓2פּ

ℎ
𝑈𝛣

𝑋 ×𝑔1,𝑓𝐴 𝑌 ×𝑔2,𝑓𝐴

𝑈𝛣

𝑓

𝑔1 𝑔2

𝑓 𝑓
=

ℎ
𝑓

𝑔1 𝑔2

𝑓

and then the first required equality to demonstrate the adjunction (showing that the unit is natural

transformation) is immediately obvious:

ℎ
𝑓

𝑔1 𝑔2

𝑓 =
ℎ

𝑓

𝑔1 𝑔2

𝑓
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For the second, first note that

𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2

𝛱𝑓

𝑔1 𝑔2
𝑓 ℎ

𝑓∗

(𝑓∘𝑔1)פּ
𝑓,𝑓

2 (𝑓∘𝑔2)פּ
𝑓,𝑓

2𝑓

≔

𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2
𝑓

ℎ

𝑓∗

(𝑓∘𝑔1)פּ
𝑓,𝑓

2 (𝑓∘𝑔2)פּ
𝑓,𝑓

2

≔
(𝑓∘𝑔1)פּ

𝑓,𝑓
2 (𝑓∘𝑔2)פּ

𝑓,𝑓
2

𝑈𝛢

𝑈𝛣

𝑓 ∘ 𝑔1 𝑓 ∘ 𝑔2
𝑓

ℎ

𝑓

then we have

𝑓 ∘ ℎ1
𝑓
𝑓

𝑈𝛣

𝑈𝛢

ℎ1𝑋ּפ(𝑓∘ℎ1)
𝑓,𝑓

2 𝑔 ℎ2

=

𝑓 ∘ ℎ1
𝑓
𝑓

𝑈𝛣

𝑈𝛢

ℎ1𝑋ּפ(𝑓∘ℎ1)
𝑓,𝑓

2 ℎ2

𝑈𝛣

𝑈𝛢

𝑌𝑋 𝑔𝑓 ∘ ℎ1 𝑓 ∘ ℎ2

(1.6)=

𝑓 ∘ ℎ1
𝑓
𝑓

𝑈𝛣

𝑈𝛢

(𝑓∘ℎ1)פּ
𝑓,𝑓

2 ℎ2𝑌𝑔 𝑓 ∘ ℎ2

=

𝑓 ∘ ℎ1
𝑓
𝑓

𝑈𝛣

𝑈𝛢

(𝑓∘ℎ1)פּ
𝑓,𝑓

2 ℎ2𝑌
𝑔 𝑓 ∘ ℎ2
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(1.6)=

𝑓 ∘ ℎ1
𝑓
𝑓

𝑈𝛣

𝑈𝛢

(𝑓∘ℎ1)פּ
𝑓,𝑓

2 ℎ2𝑌
𝑔 𝑓 ∘ ℎ2 𝑓 ∘ ℎ2

𝑓
𝑓

𝑈𝛣

𝑈𝛢

demonstrating the second required equality.

For the third,

𝑓
𝑓 ∘ 𝑔1

𝑓
𝑓

𝛱𝑓

𝑓
𝑓 ∘ 𝑔1𝑓 ∘ 𝑔1

𝑓
𝑓

𝑈𝛣

𝑈𝛢

𝑋 𝑔1

≔

𝑓
𝑓 ∘ 𝑔1

𝑓
𝑓

𝑓 ∘ 𝑔1𝑓 ∘ 𝑔1
𝑓
𝑓

𝑈𝛣

𝑈𝛣

𝑋
=

𝑓
𝑓 ∘ 𝑔1

𝑓
𝑓

𝑓
𝑓

(2.20)=

𝑓
𝑓 ∘ 𝑔1

And, finally, for the fourth,

𝑓∗

𝑔1,𝑓2פּ 𝑔1
𝑓
𝑓

𝑓 ∘ 𝑔1,𝑓2פּ
𝑓
𝑓

𝑈𝛣

𝑈𝛢

𝑔1,𝑓2פּ
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≔
𝑔1,𝑓2פּ

𝑓 ∘ 𝑔1,𝑓2פּ
𝑓
𝑓

𝑈𝛣

𝑈𝛢

𝑔1,𝑓2פּ

𝑈𝛣

𝑈𝛢
𝑔1

𝑓
𝑓

𝑓

(1.6)=
𝑔1,𝑓2פּ 𝑔1,𝑓2פּ

𝑈𝛣

𝑈𝛢
𝑔1

𝑓
𝑓

𝑓
(2.21)=

𝑔1,𝑓2פּ 𝑔1,𝑓2פּ

𝑈𝛣

𝑈𝛢
𝑔1

𝑓
1.3.3=

𝑔1,𝑓2פּ

completing the proof. �

So, we can now conclude the full Fundamental Theorem of Topos Theory

Theorem 3.2.6: The Fundamental Theorem of Topos Theory

If 𝒞 is a topos, then each slice 𝒞/𝐴 is also a topos, and there exists a sequence

𝛴𝑓 ⊣ 𝑓
∗ ⊣ 𝛱𝑓

of adjunctions for each 𝑓 ∶ 𝐴 → 𝐵 in 𝒞.
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Chapter 4
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In any category we can define a type theory, and in particular, in a topos, we can define a logic over

that type theory. We will see what this general type theory looks like in cartesian-closed categories (hint:

the typed lambda-calculus), and describe the internal logic over the type theory in topoi. Once we’ve

introduced this, wewill introduce somenice syntactic sugar into the diagrams, to have a final diagram set,

which corresponds to reasoning in higher-order intuitionistic logic. Here, a predicate is any morphism

with codomain𝛺.

The “higher-order” part of the logic means that we can quantify over variables of every type – including

propositions, which is in contrast to first-order logic, where only quantification over objects, and not

formulæ/propositions, is allowed.

This section is largely based on [Str].

4.1 Internal Type Theory

Given 𝑓 ∶ 𝐵 → 𝐴 in a cartesian closed category (and so in particular a topos), we may interpret this as a

term 𝑓(𝑥) of type𝐴, where 𝑥 is a free variable of type𝐵. Symbolically, 𝑥 ∶ 𝐵 ⊢ 𝑓(𝑥) ∶ 𝐴, we write for the

judgement “given 𝑥 is of type 𝐵, 𝑓(𝑥) is of type𝐴”. Extending this idea, in any cartesian closed category,

we may interpret a typed lambda calculus. We shall see this construction now.

4.1.1 Type Semantics

Fix 𝔹 a collection of base types. Then we have 𝕋𝔹, the collection of types, generated by the following

rules:

59
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• every base type is a type;

• if𝐴 and 𝐵 are types, then so is𝐴 → 𝐵;

• 1 is a type;

• if𝐴 and 𝐵 are types, then so is𝐴 × 𝐵; and

• nothing else is a type.

A context is an expression of the form 𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶ 𝐴𝑛, where 𝑛 is a natural number, each𝐴𝑖 is a type,
and the variables 𝑥𝑖 are pairwise distinct.

To interpret a type theory in a closed cartesian category 𝒞, we simply fix an assignment J⋅K ∶ 𝔹 → Ob𝒞
on the base types of the theory.

This is then extended naturally as follows into an assignment from all types into the objects of𝒞:

• J𝐴 → 𝐵K ≔ J𝐵KJ𝛢K;

• J𝐴 × 𝐵K ≔ J𝐴K × J𝐵K; and

• J1K ≔ 1, the terminal object in 𝒞.

Moreover, we interpret a context as follows:

J𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶ 𝐴𝑛K ≔ J𝐴1K × ⋯ × J𝐴𝑛K.

We write 𝛤 ⊢ 𝑡 ∶ 𝐴 to indicate that 𝑡 is a term of type 𝐴 in context 𝛤. We interpret this judgement as

being true if and only if there exists a morphism J𝛤 ⊢ 𝑡 ∶ 𝐴K ∶ J𝛤K → J𝐴K in 𝒞.

Now we can see the calculus on these types in a given context, which corresponds to the existence of

certain morphisms in any cartesian closed category. This tells us how we can construct new terms in any

cartesian closed category – i.e., term formation rules.

4.1.2 Term Formation Rules

The rule

(Var)𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶ 𝐴𝑛 ⊢ 𝑥𝑖 ∶ 𝐴𝑖

is interpreted as constructing the morphism

𝐴1

𝐴𝑛

𝐴𝑖
⋮

⋮

The rule

𝛤, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
(𝜆)

𝛤 ⊢ (𝜆𝑥 ∶ 𝐴.𝑡) ∶ 𝐴 → 𝐵
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is interpreted as constructing the morphism

J𝛤, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵K
J𝛤K

J𝐵K
J𝐴K
J𝐴K

The rule

𝛤 ⊢ 𝑡 ∶ 𝐴 → 𝐵 𝛤 ⊢ 𝑠 ∶ 𝐴 (App)
𝛤 ⊢ 𝑡(𝑠) ∶ 𝐵

is interpreted as constructing the morphism

J𝛤K
J𝛤 ⊢ 𝑡 ∶ 𝐴 → 𝐵K

J𝛤 ⊢ 𝑠 ∶ 𝐴K
J𝐴K

J𝐵K

J𝐴K

The rule

𝛤 ⊢ 𝑡 ∶ 𝐴 𝛤 ⊢ 𝑠 ∶ 𝐵 (Pair)
𝛤 ⊢ ⟨𝑡, 𝑠⟩ ∶ 𝐴 × 𝐵

is interpreted as constructing the morphism

J𝛤K
J𝛤 ⊢ 𝑡 ∶ 𝐴K

J𝛤 ⊢ 𝑠 ∶ 𝐵K

J𝐴K

J𝐵K

The pair of rules

𝛤 ⊢ 𝑡 ∶ 𝐴 × 𝐵 (Proj1)𝛤 ⊢ 𝜋1(𝑡) ∶ 𝐴
𝛤 ⊢ 𝑡 ∶ 𝐴 × 𝐵 (Proj2)𝛤 ⊢ 𝜋2(𝑡) ∶ 𝐵

are interpreted as constructing the morphisms

J𝛤K
J𝛤 ⊢ 𝑡 ∶ 𝐴 × 𝐵K

J𝐴K

J𝐵K
and

J𝛤K
J𝛤 ⊢ 𝑡 ∶ 𝐴 × 𝐵K

J𝐴K

J𝐵K

respectively.

Finally, the rule

(Unit)𝛤 ⊢ ∗ ∶ 1

is interpreted as constructing the morphism

J𝛤K

It can be seen, e.g., in [Str], or graphically in [GZ23] that this is sound and complete with respect to the

typed lambda calculus, with 𝜂 equivalence.
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4.2 Logical Connectives in a Topos

From here on, fix a topos 𝒞 .

Remark 4.2.1. I will henceforth write t𝛢 for t ∘ !𝛢.

The following Lemma tells us precisely when a predicate holds of a morphism.

Lemma 4.2.2

This is in any finitely complete category with sub-object classifiers.

𝑓 𝑃𝐵 𝛺𝐴 = t
𝛺𝐴

(4.1)

if and only if there exists a 𝑔 ∶ 𝐴 → 𝐵 ×𝛲,t1 such that

𝑓 𝐵𝐴 = 𝑔
𝑃
t

𝐵 ×𝛲,t1 𝐵𝐴

𝑈𝛺

(4.2)

Proof: (⟹ )

𝐴 𝑓 𝐵 ≔

𝑈𝛺

𝐴 𝑓 𝐵𝑃𝑃 ∘ 𝑓
=

𝑈𝛺

𝐴
𝑓

𝐵
𝑃𝑃 ∘ 𝑓

𝑃 ∘ 𝑓
𝑃 ∘ 𝑓

(4.1)=

𝑈𝛺

𝐴
𝑓

𝐵
𝑃𝑃 ∘ 𝑓

t𝛢

t𝛢 =

𝑈𝛺

𝐴
𝑓

!𝛢

𝐵
𝑃

t

𝑃 ∘ 𝑓

t𝛢

t𝛢

=
t𝛢

𝑓

!𝛢
t𝛢

𝑃 ∘ 𝑓 𝑃

t

𝐵 ×𝛲,t1

t

𝑃
𝐵𝐴

𝑈𝛺 𝑈𝛺
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(⟸ )

𝑓 𝑃𝐴 𝐵 𝛺 (4.2)= 𝑃𝐵 𝛺

𝑈𝛺

t

𝑃
𝑔𝐴 𝐵 ×𝛲,t1

= 𝐵 𝛺

𝑈𝛺

t

𝑃
𝑔𝐴 𝐵 ×𝛲,t1

𝑈𝛺

𝑃 = 𝛺

𝑈𝛺

t

𝑃
𝑔𝐴 𝐵 ×𝛲,t1

=

𝑈𝛺

t

𝑃
𝑔𝐴 𝐵 ×𝛲,t1

𝑈𝛺

t
= 𝑔𝐴

𝑈𝛺

t𝐵 ×𝛲,t1 𝛺

= 𝐴 𝛺
t

�

Using this, we can introduce the familiar logical operations.

4.2.1 Conjunction

First up, is conjunction. As the right-hand side of the below equation is (trivially) monic, we can define

a morphism uniquely as its subobject classifier, this is ∧.

Definition 4.2.3

𝑈𝛺

∧
t

𝛺

𝛺
≔

t

t
𝛺

𝛺

(4.3)

Its truth conditions are expressed as expected.

Proposition 4.2.4

𝑓

𝑔
∧ 𝛺

𝐴

𝐵

𝛺

𝛺
= 𝛺

𝐴

𝐵
t (4.4)
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if and only if

𝑓𝐴 𝛺 = 𝐴 𝛺
t and 𝑔𝐵 𝛺 = 𝐵 𝛺

t (4.5)

Proof: by Lemma 4.2.2, Equation 4.4 holds if and only if there exists a morphism 𝑥 such that

𝑓

𝑔

𝐴

𝐵

𝛺

𝛺
=

𝐴

𝐵
𝑈𝛺

𝑥
∧
t

𝛺

𝛺
(4.3)
≔

𝐴

𝐵

t

t

𝛺

𝛺

which in turn holds if and only if Equation 4.5 holds. �

We can now prove some (nice) properties of ∧. We can show it is a commutative monoid with respect to

the (strict) product structure on each topos.

Lemma 4.2.5

∧𝛺

𝛺
𝛺 = ∧𝛺

𝛺
𝛺

(4.6)

Proof: Equation 4.6 holds if and only if there exists maps 𝑥 and 𝑦 such that

𝑈𝛺

𝛺∧
t 𝛺 =

𝑈𝛺

𝛺∧ ∘ 𝜎
t 𝛺𝑥 𝐴

and

𝑈𝛺

𝛺∧ ∘ 𝜎
t 𝛺𝐴 =

𝑈𝛺

𝛺∧
t 𝛺𝑦𝐴

and, by Lemma 4.2.2, these hold if and only if

𝑈𝛺

𝛺∧
t 𝛺 ∧ 𝛺 = t

𝛺
(4.7)
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and

𝑈𝛺

𝛺∧
t 𝛺 ∧ 𝛺𝑦𝐴 = t

𝛺𝐴
(4.8)

hold.

But as

𝑈𝛺

𝛺∧
t 𝛺 ∧ 𝛺 ≔

t

t
𝛺

𝛺
∧ 𝛺

=
t

t
𝛺

𝛺
∧ 𝛺 4.2.4= t

𝛺

both Equation 4.7 and Equation 4.8 must hold. �

Now I will show that ∧ is associative, which is done first by seeing the following.

Lemma 4.2.6

∧
∧

𝛺
𝛺
𝛺

𝛺
𝛺 = 𝜒t×t×t

𝛺
𝛺
𝛺

𝛺

Proof: this is true if and only if there exist 𝑥 and 𝑦 such that

𝑈𝛺

∧ ∘ (∧ × id𝛺)
t

𝐴
𝛺
𝛺
𝛺

=

𝑈𝛺

𝜒t×t×t
t𝑥𝐴

𝛺
𝛺
𝛺

= 𝐴

𝛺

𝛺

𝛺

t

t

t

and

𝛺

𝛺

𝛺

t

t

t

=

𝑈𝛺

𝜒t×t×t
t

𝛺
𝛺
𝛺

=

𝑈𝛺

∧ ∘ (∧ × id𝛺)
t

𝐴
𝛺
𝛺
𝛺

𝑦
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By Lemma 4.2.2, these both hold if and only if.

𝛺

𝛺

𝛺

t

t

t

∧ ∧ 𝛺𝛺
= t

𝛺

which we see because

𝛺

𝛺

𝛺

t

t

t

∧ ∧ 𝛺𝛺
=

t

t
∧ 𝛺𝛺

𝛺

= t
𝛺

Which completes the proof. �

The same reasoning shows us that

∧
∧

𝛺
𝛺
𝛺 𝛺

𝛺
= 𝜒t×t×t

𝛺
𝛺
𝛺

𝛺

and so we conclude that

Proposition 4.2.7

∧
∧

𝛺
𝛺
𝛺

𝛺
𝛺 = ∧

∧

𝛺
𝛺
𝛺 𝛺

𝛺

Theorem 4.2.8: ∧ is a Monoid

∧ is a symmetric monoid with monoidal unit t (with respect to the product structure).

Proof: the only thing left to prove is that t is the monoidal unit, which is similar to the above. �

Finally, we can see how this interacts with the comonoidal structure on a topos induced by the product
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structure.

Proposition 4.2.9

∧𝛺 𝛺
𝛺

𝛺 = 𝛺

Proof: similar to everything else above. �

Remark 4.2.10. Given the results of this subsection, I will denote conjunction in a category as a small

triangle, like the copymaps, butwith only 1 output. These triangles can take in asmany inputs as needed,

and itwill be unambiguouswhat ismeant – the pairwise conjoining of two of the inputs, where the order

does not matter. To reflect that t is the unit of the adjunction, I will draw it as the small triangle with

no inputs, and a single output. The triangle with exactly one input and exactly one output is just the

identity on𝛺.

4.2.2 Implication

Wewill define implication in terms of conjunction and logical equality. So first we will see how to define

logical equality.

Definition 4.2.11

𝑈𝛺

eq𝛢

t

𝐴
𝐴𝐴 ≔

𝐴
𝐴𝐴

(4.9)

Remark 4.2.12. I write ‘⇔’ for eq𝛺.

Proposition 4.2.13

𝑓

𝑔

eq𝛢
𝐵

𝐵

𝐵

𝐴

𝐴
𝛺 = 𝐵 𝛺

t (4.10)

if and only if

𝐵 𝑓 𝐴 = 𝐵 𝑔 𝐴
(4.11)
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Proof: by Lemma 4.2.2, Equation 4.10 holds if and only if there exists an ℎ such that

𝑔

𝑓
𝐵

𝐴

𝐴
=

𝑈𝛺

ℎ
𝐴𝐵

𝐴

𝐴
t

eq𝛢

≔ ℎ
𝐴𝐵

𝐴

𝐴

which holds, via the universal property for the product if and only if Equation 4.11 holds. �

Definition 4.2.14

⇒ 𝛺
𝛺

𝛺
≔ ⇔ 𝛺

𝛺

𝛺

𝛺

𝛺

𝛺

(4.12)

where I am using the white triangle to represent conjunction, as discussed earlier.

Theorem 4.2.15: Graphical Modus Ponens

⇒ 𝛺
𝛺

𝛺

t

𝑝
= 𝛺

t

implies that

𝛺𝑝 = 𝛺
t

Proof: immediate from the definitions of ∧ and⇔. �

4.2.3 Universal Quantification

We have a different universal quantifier for every type in 𝒞.

Definition 4.2.16: Universal Quantification

𝑈𝛺

t

∀𝛢 𝛺
𝐴

≔

𝐴
𝐴

t
𝛺

Then it has truth conditions as follows.
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Proposition 4.2.17

∀𝛢𝑓𝐵 𝛺𝐴
𝛺 = t

𝐵 𝛺

if and only if

𝑓𝐵

𝐴

𝛺
𝐴 = 𝛺

𝐵

𝐴
t

Proof: this is similar to the conditions for ∧ and eq. �

Finally, we can introduce somemore notation, which allows us to abstract away with universal quantifi-

ers, and treat them just like states. So, we define

𝑃 𝛺𝑌
∀𝑋

≔ 𝑃 𝛺𝑌
𝑋 ∀𝑋
𝑋

𝛺

This is coherent in the following sense, we see, trivially that

𝑃 𝛺𝑌
∀𝑋

𝑓𝑍 = 𝑃 𝛺𝑍
∀𝑋

𝑓
𝑌

And also trivially that

𝑃 𝛺
𝑌
∀𝑋 = 𝑃 𝛺𝑌

∀𝑋

With just these three logical operations, we can define every other logical operation in higher-order intu-

itionistic logic. The following definitions are what we need.

f ≔ ∀(𝜙 ∶ 𝛺).𝜙

𝜙 ∨ 𝜓 ≔ ∀(𝜒 ∶ 𝛺).((𝜙 ⇒ 𝜒) ∧ (𝜓 ⇒ 𝜒)) ⇒ 𝜒
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∃(𝑥 ∶ 𝐴).𝜙(𝑥) ≔ ∀(𝜓 ∶ 𝛺).(∀(𝑥 ∶ 𝐴).𝜙(𝑥) ⇒ 𝜓) ⇒ 𝜓

¬𝜙 ≔ 𝜙 ⇒ f

4.3 The Internal Logic of a Topos

We will now extend the type theory of section 4.1. Terms of type𝛺 in a context, are called the proposi-

tions of the context, and are special. In contrasts to the judgements of type theory, we nowhave sequents.

If 𝛤 is a context and 𝛤 ⊢ 𝜙𝑖 ∶ 𝛺 for 𝑖 = 1, … , 𝑛, and 𝛤 ⊢ 𝜙 ∶ 𝛺, then we write

𝛤 ∣ 𝜙1, … , 𝜙𝑛 ⊢ 𝜙

if there exists an 𝑥 ∶
𝑛
∏
𝑖=1

J𝛤K → J𝛤K such that

𝑥 J𝛤 ⊢ 𝜙 ∶ 𝛺K 𝛺J𝛤K
𝑛
∏
𝑖=1

J𝛤K
= 𝛺

J𝛤 ⊢ 𝜙1 ∶ 𝛺K
J𝛤K

J𝛤 ⊢ 𝜙𝑛 ∶ 𝛺K
J𝛤K

⋮ ⋮ ⋮

𝛺

𝛺

and I will write𝛷 as a shorthand for 𝜙1, … , 𝜙𝑛.

We will add some new term-forming rules (specific to𝛺) which allow us to use the logical connectives

that we saw in the previous section.

𝛤 ⊢ 𝜙 ∶ 𝛺 𝛤 ⊢ 𝜓 ∶ 𝛺
(∧)𝛤 ⊢ 𝜙 ∧ 𝜓 ∶ 𝛺

(t)𝛤 ⊢ t ∶ 𝛺

𝛤 ⊢ 𝜙 ∶ 𝛺 𝛤 ⊢ 𝜓 ∶ 𝛺
(⇒)𝛤 ⊢ 𝜙 ⇒ 𝜓 ∶ 𝛺

𝛤 ⊢ 𝜙 ∶ 𝐴 → 𝛺
(∀)

𝛤 ⊢ ∀(𝑥 ∶ 𝐴).𝜙(𝑥) ∶ 𝛺

These correspond to the obvious morphisms in the topos.

With these, we can start to define the rules of the logic over the type theory. The first collection of rules

tell us the valid structural rules of the logic, which are not of interest to us (although substructural logics

are definitely of interest in general: see for example [Abe24] and [Res99]). As such, I will only give two

examples of which morphisms these correspond to.

𝜎 ∶ 𝛥 → 𝛤 𝛤 ∣ 𝛷 ⊢ 𝜙
(Subst)

𝛥 ∣ 𝛷[𝜎] ⊢ 𝜙[𝜎]

𝛤 ∣ 𝛷 ⊢ 𝜓 𝛤 ⊢ 𝜙 ∶ 𝛺
(Weak)

𝛤 ∣ 𝛷, 𝜙 ⊢ 𝜓
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𝛤 ∣ 𝛷, 𝜙, 𝜙 ⊢ 𝜓
(Contr)

𝛤 ∣ 𝛷, 𝜙 ⊢ 𝜓

𝛤 ∣ 𝛷1, 𝜙1, 𝜙2, 𝛷2 ⊢ 𝜓 (Perm)
𝛤 ∣ 𝛷1, 𝜙2, 𝜙1, 𝛷2 ⊢ 𝜓

𝛤 ⊢ 𝜙 ∶ 𝛺
(Ax)

𝛤 ∣ 𝜙 ⊢ 𝜙

𝛤 ∣ 𝛷 ⊢ 𝜙 𝛤 ∣ 𝛷, 𝜙 ⊢ 𝜓
(Cut)

𝛤 ∣ 𝛷 ⊢ 𝜓

Let’s see which morphisms the (Contr) and (Ax) rules correspond to. The (Contr) rule says that given

that there exists an 𝑥 such that

𝑥 J𝛤 ⊢ 𝜓 ∶ 𝛺K 𝛺J𝛤K
𝑛+2
∏
𝑖=1

J𝛤K
= 𝛺

J𝛤 ⊢ 𝜙1 ∶ 𝛺K
J𝛤K

J𝛤 ⊢ 𝜙𝑛 ∶ 𝛺K
J𝛤K

⋮ ⋮ ⋮

𝛺

𝛺

J𝛤 ⊢ 𝜙 ∶ 𝛺K
J𝛤K 𝛺

J𝛤 ⊢ 𝜙 ∶ 𝛺K
J𝛤K 𝛺

there must be a 𝑦 such that

𝑦 J𝛤 ⊢ 𝜓 ∶ 𝛺K 𝛺J𝛤K
𝑛+1
∏
𝑖=1

J𝛤K
= 𝛺

J𝛤 ⊢ 𝜙1 ∶ 𝛺K
J𝛤K

J𝛤 ⊢ 𝜙𝑛 ∶ 𝛺K
J𝛤K

⋮ ⋮ ⋮

𝛺

𝛺

J𝛤 ⊢ 𝜙 ∶ 𝛺K
J𝛤K 𝛺

We see this is the case by

𝑥 J𝛤 ⊢ 𝜓 ∶ 𝛺K 𝛺J𝛤K
𝑛
∏
𝑖=1

J𝛤K

J𝛤K
= 𝛺

J𝛤 ⊢ 𝜙1 ∶ 𝛺K
J𝛤K

J𝛤 ⊢ 𝜙𝑛 ∶ 𝛺K
J𝛤K

⋮ ⋮ ⋮

𝛺

𝛺

J𝛤 ⊢ 𝜙 ∶ 𝛺K
J𝛤K

𝛺

J𝛤 ⊢ 𝜙 ∶ 𝛺K 𝛺
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= 𝛺

J𝛤 ⊢ 𝜙1 ∶ 𝛺K
J𝛤K

J𝛤 ⊢ 𝜙𝑛 ∶ 𝛺K
J𝛤K

⋮ ⋮ ⋮

𝛺

𝛺

J𝛤 ⊢ 𝜙 ∶ 𝛺K
J𝛤K

𝛺

J𝛤 ⊢ 𝜙 ∶ 𝛺K 𝛺

= 𝛺

J𝛤 ⊢ 𝜙1 ∶ 𝛺K
J𝛤K

J𝛤 ⊢ 𝜙𝑛 ∶ 𝛺K
J𝛤K

⋮ ⋮ ⋮

𝛺

𝛺

J𝛤K
𝛺

𝛺
J𝛤 ⊢ 𝜙 ∶ 𝛺K 𝛺

4.2.9= 𝛺

J𝛤 ⊢ 𝜙1 ∶ 𝛺K
J𝛤K

J𝛤 ⊢ 𝜙𝑛 ∶ 𝛺K
J𝛤K

⋮ ⋮ ⋮

𝛺

𝛺

J𝛤K
J𝛤 ⊢ 𝜙 ∶ 𝛺K 𝛺

The Ax rule says given a morphism J𝛤 ⊢ 𝜙 ∶ 𝛺K ∶ J𝛤K → 𝛺, there exists an 𝑥 such that

𝑥 J𝛤 ⊢ 𝜙 ∶ 𝛺K 𝛺J𝛤KJ𝛤K = J𝛤 ⊢ 𝜙 ∶ 𝛺K 𝛺J𝛤K 𝛺

= J𝛤 ⊢ 𝜙 ∶ 𝛺K 𝛺J𝛤K

this is trivially satisfied by the identity on J𝛤K.

Now we can see the rules for the logical operations, and the morphisms they correspond to in each

topos.
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(tI)
𝛤 ∣ 𝛷 ⊢ t

𝛤 ∣ 𝛷 ⊢ 𝜙 𝛤 ∣ 𝛷 ⊢ 𝜓
(∧I)

𝛤 ∣ 𝛷 ⊢ 𝜙 ∧ 𝜓

𝛤 ∣ 𝛷 ⊢ 𝜙 ∧ 𝜓
(∧E1)

𝛤 ∣ 𝛷 ⊢ 𝜙

𝛤 ∣ 𝛷 ⊢ 𝜙 ∧ 𝜓
(∧E2)

𝛤 ∣ 𝛷 ⊢ 𝜓

𝛤 ∣ 𝛷, 𝜙 ⊢ 𝜓
(⇒I)

𝛤 ∣ 𝛷 ⊢ 𝜙 ⇒ 𝜓

𝛤 ∣ 𝛷 ⊢ 𝜙 ⇒ 𝜓 𝛤 ∣ 𝛷 ⊢ 𝜙
(⇒E)

𝛤 ∣ 𝛷 ⊢ 𝜓

𝛤, 𝑥 ∶ 𝐴 ∣ 𝛷 ⊢ 𝜙(𝑥)
(∀I)

𝛤 ∣ 𝛷 ⊢ ∀(𝑥 ∶ 𝐴).𝜙(𝑥)

𝛤 ∣ 𝛷 ⊢ ∀(𝑥 ∶ 𝐴).𝜙(𝑥)
(∀E)

𝛤, 𝑥 ∶ 𝐴 ∣ 𝛷 ⊢ 𝜙(𝑥)

These morphisms can be easily inferred from the truth conditions given in the previous subsection.

Hence, we see that the internal logic of a topos is sound with respect to these rules. In fact, however,

it is not complete, there are three rules missing: the axiom of unique choice, and extensionality of both

functions and predicates. Completeness is proved by showing that these rules form a topos themselves.

For a detailed proof, see [Str, Chapter 13].
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Chapter 5

Conclusion

In conclusion, we have seen a string-diagrammatic presentation of topoi. I have shown how this can be

used to do topos theory purely via string diagrams – at least the parts that deal with categorical logic, and

the fundamental theorem. In places, particularly in the case of the dependent product functor, we saw

a significant simplification over the classical constructions.

It is my hope that these diagrams can be fine-tuned and used further to simplify topos theory and reas-

oning inside of topoi. Paraphrasing [Joh02], I hope that this can be the beginning of another sketch of

the elephant that is topos theory.

Perhaps there is also use to be found in the string-diagrammatic syntax for higher-order intuitionistic

logic presented in the final section. At least, it should be possible to define an entire proof assistant,

which allows for everything to be proved using string-diagrams, although just as it is cumbersome to

do everything with pure set theory, I suspect it would be cumbersome to limit everything to being done

within string diagrams. So, again, the usefulness of this, outside of working within a topos directly, is

unclear.

I have quite a few comments on where this work could be extended.

• Iwould like to see a purely diagrammatic characterisation of each𝑈𝛢 ∶ 𝒞/𝐴 → 𝒞, so thatwenever

have to consider the actual action of the function, but can stay purely within string diagrams –

this may not be possible, although I conjecture that everything can be proved with the graphical

pullback lemma;

• Iwould like to see a good, simple, string diagrammatic account of the construction of exponentials

in each slice of a topos – as remarked before, I think that if this is possible, then it would be most

likely to be possible with the construction given in [Joh14];

• I would like to see the construction of coproducts in a topos done with string diagrams;

• I would like to see what a boolean topos looks like string diagrammatically, and perhaps, more

general, any boolean category;

• I would like to see if this string-diagrammatic presentation yields any improvements in under-

standing inmore areas of topos theory – and in particular in a Grothendieck topos, rather than in

the elementary topoi considered here; and finally

• I would like to see whether the string-diagrammatic syntax for higher-order intuitionistic logic

75
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could aid in finding a normal form for higher-order intuitionistic logic formulæ – as no such nor-

mal form exists.
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