String and Box Diagrams for Topoi

William James Angus

A dissertation submitted in Michaelmas 2024 for the degree of
MSc Advanced Computer Science
at The University of Oxford

DOMI | MINA

NVS TIO
ILLV | MEA

Supervised by Vincent Wang-Mascianica.

ABSTRACT

Abstract

String diagrams were developed to aid reasoning in certain cat-
egories, most notably monoidal categories. Extending basic
string diagrams with copy maps allows reasoning in categories
with finite products. Further adding functor boxes, allows reas-
oning in finitely complete categories, categories with sub-object
classifiers, and cartesian closed categories. Combining these al-
lows reasoning in arbitrary (elementary) topoi. This in turn al-
lows for a proof of the Fundamental Theorem of Topos Theory
purely using string diagrams, as well as developing a string dia-
grammatic account of the internal logic of a topos (which coin-
cides with higher-order intuitionistic logic).

— s lR e S——

Contents

0 Introduction

1 Basic String Diagrams and Functor Boxes

1.1 StringDiagrams L
1.2 Monoidal Categories
1.2.1 String Diagrams for (Strict) Monoidal Categories
1.2.2 Symmetric Monoidal Categories
1.3 FunctorBoxes
1.3.1 Inside-outFunctorBoxes
1.3.2 Outside-InFunctorBoxes,
1.4 Natural Transformations e
2 Topoi
2.1 Finite Limits e e e e
2.1.1 Products e
2.1.2 DPullbacks and Slice Categories
2.1.3 Discrete Fibrations
2.1.4 Slices of Slices are just Slices of the Base Category
22 Closed Categoriesot i e
221 WithFunctorBoxes
2.2.2 Bastard Cups/CapsandClasps
2.2.3 Symmetric Monoidal Closed Categories
2.3 Sub-objectClassifiers L
24 Topol

3 The Fundamental Theorem

3.1 Slicesof Topoiare Topoi
3.1.1 FiniteLimits e
3.1.2 Sub-objectClassifier
3.1.3 Exponentials
3.2 Pullback Functor has Left and Right Adjoints
3.2.1 PullbackFunctor
322 DependentSumFunctor Lo oo
3.23 Dependent Product Functor o oL

4 Categorical Logic
4.1 Internal Type Theory
41.1 TypeSemantics Lo L

CONTENTS 4
41.2 Term FormationRules L o 60

4.2 Logical ConnectivesinaTopos 62
421 Conjunction e 63

422 Implication Lo 67

4.2.3 Universal Quantification L0 000 L 68

43 'Thelnternal LogicofaTopos 70

5 Conclusion 75
References 77

Chapter 0

Introduction

This thesis presents an introduction to topoi and their internal logic via the use of string diagrams and
functor boxes.

String diagrams were introduced in [JS88], which demonstrates the equivalence between the morphisms
in monoidal categories and diagrams existing in the plane — string diagrams. This has been extended to
different kinds of categories; for a survey of such, see [Sell1]. It is common for these string diagrams
to be used to aid reasoning in these categories, most notable is in the case of Quantum Computation
being taught to High School students [D-CYP+23]. It is my hope that this thesis can contribute to this
tradition with the addition of string diagrams for topoi. I will combine the pure string diagrammatic
approach with functor boxes, as introduced in [Mel06].

A topos (or, in particular, an elementary topos, which is what this thesis deals with) is a category which
is in some sense a generalisation of Set. That is, it allows for set-like reasoning within it. We shall see
this in the form of higher-order intuitionistic logic, which is, at least in some senses, a slight weakening
of typical set theory with classical first-order logic. Topoi were originally introduced by Grothendieck
in the 1940s, for the purpose of studying sheaves on a space. However, nowadays there is a plethora of
research into topoi, going in many directions (see e.g., the as of yet incomplete [Joh02]). Here, however,
we are most concerned with its internal logic, through the lens of categorical logic.

Categorical logic is the field of interpreting logic within categories. Different kinds of categories have
different kinds of logics. For example, cartesian closed categories have an internal logic equivalent to
the typed lambda calculus. In the case of topoi, the internal logic is that of higher-order intuitionistic

logic.

Categorical logic is used throughout computer science. For example, there are applications in the design
of programming languages (such as Haskell or Lisp), compiler optimisation, and interactive theorem
proving (such as in HOL or Isabelle).

The only pre-requisite if that of basic category theory: in particular, the notions of category, functor,
natural transformation, and limit. Any basic course on category theory should cover these topics, but
for a full introduction to the pre-requisite material see [Rie17] (first three chapters) or [Mac71] (up to,
and including, chapter V). It would also be helpful for the reader to have encountered some type theory
and logic before, as well as categorical string diagrams in any capacity.

The structure of this thesis is as follows.

* Chapter 1 introduces monoidal categories and basic string diagrams and functor boxes.

5

Chapter 2 shows how we can reason string-diagrammatically, by extending the results of the pre-
vious chapter, in categories with finite products, finitely complete categories, cartesian closed cat-
egories, and categories with sub-object classifiers. Combining these gives a string-diagrammatic
syntax for topoi.

Chapter 3 uses these string diagrams to prove the Fundamental Theorem of Topos Theory. This
use of string diagrams, in places, provides a great simplification of the non-string-diagrammatic
proofs of the Fundamental Theorem.

Chapter 4 introduces categorical logic using the previously developed string diagrams. Then we
shall see a development of the key logical operations inside of a topos, using string diagrams, which
yields a string-diagrammatic version of higher-order intuitionistic logic.

The main contributions of this thesis are as follows:

In chapter 2, Iintroduce a new string-diagrammatic calculus (based on an old calculus which was
not proved to be coherent) for left and right closed monoidal categories, and show its coherence.

In chapter 2, Iintroduce a new string-diagrammatic calculus for categories with a sub-object clas-
sifier.

The previous two results yield a new string-diagrammatic calculus for topoi.

In chapter 3, I prove the Fundamental Theorem of Topos Theory by using this calculus, which
yields new constructions of the dependent sum and dependent product functors.

In chapter 4, I prove soundness for the internal type logic of a topos using string diagrams, and I
introduce nice novel syntactic sugar for the logical operators, which yields a string-diagrammatic
calculus for reasoning on higher-order intuitionistic logic.

Finally, before proceeding, here is a list of notation that I employ:

Ob @ is the collection of objects of the category C;
id ; is the identity morphism on 4;
1 is the terminal object of a category;

AxA
7fl.

A xBis the pullback of f: 4 > Xand g : B — X; and

> is the projection map of 4; x 4, onto 4, as given by the binary product;

Bf“fz is the projection morphism 4, .4, — 4, of the pullback.

Chapter 1

Basic String Diagrams and Functor
Boxes

Contents
1.1 StringDiagrams i e e e 7
1.2 Monoidal Categorieso i ittt e e e 9
1.2.1 String Diagrams for (Strict) Monoidal Categories 10
1.2.2 Symmetric Monoidal Categories 11
1.3 FunctorBoxes it i i ittt it e e e e e 13
1.3.1 Inside-outFunctorBoxes 13
1.3.2 Outside-In FunctorBoxes 15
1.4 Natural Transformationso v v vttt it vt v v vnaneas 16

In this chapter, I will introduce the basic string diagrams and functor boxes, upon which the rest of the
thesis is based, we will start with arbitrary string diagrams applicable to any category, then move into
those specialised for monoidal categories; and finally I will introduce functor boxes.

1.1 String Diagrams

To begin, let’s see some basic string diagrams. These are diagrams which allow us to graphically represent
a unique morphism in a given category. The most basic form is given ' : 4 — B in a category C, we
write

A8

to denote f string diagrammatically.

We can represent composition as follows:

1.1. STRING DIAGRAMS 8

Definition 1.1.1: Graphical Composition
Let @ be a category,and f : 4 — Band g : B — Cin €, then

Al e 1Bl g 1€ o Al plC (1.1)

and then identities as just strings:

Definition 1.1.2: Graphical Identity
Let © be a category, and 4 € Ob €, then

4 - Alg 14 (1.2)

Given these definitions, we can see that the length of a “string” in a string diagram doesn’t matter:

A wo Abg, M, g, 4
w iidAoidAoidAi - A id A4
wy A

We can also see that associativity is baked in to string diagrams, consider the following morphism

ifigihﬂ

we have no way of telling whether this is the composite (%2 o g) o for i e (g ° f), which is good, because

they are identical in any category.

As it stands, these diagrams are not too interesting — we can enrich them by allowing vertical compos-
ition of wires and morphisms — which we shall see in the next section. However, first, we can string
diagrammatically define the notions of isomorphism and monomorphism:

— Definition 1.1.3: Isomorphism

Let € be a category with a morphism /" : 4 — B. Then we say that f is an Zsomorphism if there
exists a morphism g : B — A in € such that

Al B[4 4

and

9 CHAPTER 1. BASIC STRING DIAGRAMS AND FUNCTOR BOXES

— Definition 1.1.4: Monomorphism

Let € be a category with morphism f : 4 — B, we say that / is monic or that it is a monomorphism
if whenever

Lglif*=4gz—f*

for some g; and g, in ©, then

1.2 Monoidal Categories

Almost all work done with these kinds of string diagrams take place in monoidal categories. This is
because they allow us to greatly enrich the diagrams by allowing vertical composition, rather than the
horizontal composition that we have been limited to thus far.

— Definition 1.2.1: Monoidal Category
Let (@, ®,1, 2, 4, p) be a sextuple consisting of

* acategory C;
* afunctor ® : € x € — @, known as the monoidal product;
* adistinguished element / € @, known as the monoidal unit;

* anatural isomorphism « with components ey y , : (X ®Y) ® Z — X ® (Y ® Z), known
as the associator;

* anatural isomorphism A with components Ay : / ® X — X, known as the left unitor; and
* anatural isomorphism p with components py : X ® I — X, known as the right unitor,

such that the following triangle and pentagon equations

(XY ayy > XQ(IQY)
Py ®idy idy®4y
XY
(XeY)eZ)eoW ayy z®idy > (XY 2)W
2XQY.ZW AXYRZW
X®Y)®(Z W) Xe(Yez)eWw)
/
Ay y zew idy®ay z

XY (ZeWw))

1.2. MONOIDAL CATEGORIES 10

commute for all objects X,Y, Z, W of €, then we say that € (or more precisely, (C, ®, 1, «, 4, p)) is
a monoidal category.

In the special case where «, 4, and p are identities, we call it a...

Definition 1.2.2: Strict Monoidal Category

A monoidal category (@, ®,1, a, A, p) is a strict monoidal category if the natural transformations «,
A, and p are all the identity natural transformations.

These are the kinds of monoidal categories that we are interested in. I will assume that all monoidal
categories are strict in this thesis. This may seem like a problematic approach, however, the following
Theorem ensures that this is innocent

Every monoidal category is monoidally equivalent to a strict monoidal category.

rTheorem 1.2.3: [Mac63]

In other words, we may always replace any monoidal category with its strict equivalent, and work within
that instead. That is what we do. The reason for this is that strict monoidal categories have a particularly
nice string-diagrammatic syntax, which we shall see now.

1.2.1 String Diagrams for (Strict) Monoidal Categories

In string diagrams, we represent the monoidal product as stacking diagrams vertically. Thatis,

— Definition 1.2.4
et @ be a (strict) monoidal category with morphisms /' : 4 — Band ¢ : C — D, we define

Fiprats

C D
1 g —

4eC B®D
= feg

Again, this has associativity baked in (which is why string diagrams naturally work with strict monoidal
categories over their non-strict counterparts):

A B
af*
<o
E F
41,[*

we cannot tell whether thisis (f ® ¢) ® hor f ® (¢ ® h).

11 CHAPTER 1. BASIC STRING DIAGRAMS AND FUNCTOR BOXES

We draw the morphism id;, the identity on the monoidal unit as an empty diagram:

which gives rise to the notion of states and effects, morphisms from / and into 7 respectively:

@ -

Representing id; as the empty diagram encodes the unital strictness as follows (where the dashed lines
mean that we do not usually draw them):

In any monoidal category, we have the “interchange law”: (¢ /) ® (1 ® 1) = (¢ ® 7) o (f ® h). This s
immediately obvious string-diagrammatically, as can be seen by the following diagram which represents
both sides of the equation:

A B C
4f_g*

D E F
S on i

This is one way in which string diagrams make things much simpler compared to the “1-dimensional”
language of pure text.

This syntax is sound and complete for reasoning in monoidal categories, so long as we equate diagrams up
to “planar isotopy”, i.e., two diagrams, drawn on the plane, within a boundary rectangle, with all input
and output strings touching the boundary rectangle, are equal if and only if it is possible to transform,
continuously, one into the other by continuously moving around morphisms inside the boundary rect-
angle, disallowing any crossing of strings or boxes, and disallowing any strings attached to the boundary
rectangle from becoming unattached. Then,

Theorem 1.2.5: [JS91, Theorem 1.2]

Two morphisms are equal in a monoidal category if and only if the two string diagrammatic repres-
entation of these morphisms are equal up to planar isotopy.

1.2.2 Symmetric Monoidal Categories

Given Theorem 1.2.7, it may be interesting to consider diagrams in which strings are allowed to cross over
each other (at least sometimes). This gives rise to the notion of a symmetric monoidal category:

1.2. MONOIDAL CATEGORIES 12

— Definition 1.2.6: Symmetric Monoidal Category
A monoidal category € is a symmetric monoidal category if it has a braiding natural isomorphism &
with components g p : 4 ® B — B ® A, which is self-inverse: g5 4 o 0 = id 455, and satisfies the
hexagon equations
XeY)®Z wevz— ZQ (X Q®Y)
axy,z Az xy
— ~
XY ®2) ZeX)®Y
= idy®a , oy 7®idy
—
X®(ZQ®Y) iy —> (X ®2Z)QY
XY ®Z) —areze— Y QZ)®X
Ayyz "‘}_',IZ,X
XeY)®Z Y®(ZeX)
~
oy y®id, idy®ay ,
~ —~
rYeoex)ez wxz— V@ (X ® 2)
for all objects X, Y, Z of C.

We represent the braiding o 5 in a symmetric monoidal category with the diagram

A

5 X
The self-inverse property ensures that

A A

And the hexagon equations ensure that

A A A A
B _ B and B _ B
C C C C

The natural transformation property ensures that:

Al ¢ |3 4 ¢ 1D
x = x (1.4)
i g D ¢ f £

Soundness and completeness for this graphical calculus is then weakened to just being isotopic; i.e.,

13 CHAPTER 1. BASIC STRING DIAGRAMS AND FUNCTOR BOXES

Theorem 1.2.7: [JS91, Theorem 2.3]

Two morphisms are equal in a symmetric monoidal category if and only if the two string diagram-

matic representation of these morphisms are equal up to isotopy (that is, they are isotopic, or, equi-
valently, isomorphic).

Next, I'll introduce functor boxes.

1.3 Functor Boxes

Functor boxes allow us to reason string diagrammatically with functors. There are two notions of func-
tor boxes: inside-out functor boxes, and outside-in functor boxes. We shall see the former first — these
are the original notion of functor boxes, as introduced in [Mel06].

1.3.1 Inside-out Functor Boxes

— Definition 1.3.1: Functor Box

LetF : ¢ — D be a functor. An (inside-out) functor box (representing F) is a diagram of the kind
on the left, which is defined to be equal to a diagram on the right.

FA4 |4 EB

Remark 1.3.2. Note that in Equation 1.5, I'start using colours. Yellow and orange demonstrate that

the ambient category is D and €, respectively. I will often use the notationF : € — D to demonstrate
which colours denote which ambient category.

We can now see that these behave just like functors, in that they preserve composition, and identit-
ies.

— Lemma 1.3.3

Inside-out functor boxes preserve identities. Thatis, given F: € — D,

FA 14 FA FA

holds.

1.3. FUNCTOR BOXES

14

Proof:
FA |4 FA (1.2) FA |4 . Al FA (1.5) FA . FA
= ldA = FldA
F F
F4 |, F4 0» F4
= E— IdFA P =
[|
— Lemma 1.3.4
Inside-out functor boxes preserve composition. Thatis, given F: € — D,
FA |4 B C| FC FA |4 B|FB|B C| FC
— £ = f g (1.6)
F F F
holds.
Proof:
FA |4 B CIFC uny FA4l4 CI|FC us F4 FC
F : ¢of 2 Mipg.p FC
F F
_ FA FgOFf FC (L) FA Ff E F¢ FC

15

CHAPTER 1. BASIC STRING DIAGRAMS AND FUNCTOR BOXES

1.3.2 Outside-In Functor Boxes

There is an alternative convention for functor boxes, which makes sense when the functor in question is
faithful. These functor boxes go in the opposite direction to the functor:

of F.

— Definition 1.3.5: Outside-In Functor Boxes
LetF: @ — D beafaithful functor. Then we define,

F5| 5

FC

F

1391

Ef

F5| B

this makes sense as long as everything inside the outside-in functor box is indeed in the codomain

These functor boxes also behave like functors, preserving composition and identities...

F F
AFA FfEFf FC|C _ A4|F4 Fg - Ff EC|C _
A C A B
= Aeofle = & f 2
F F F
A|F4 |4 _ A|F4 idy,, F4|4d _ A|F4 Fid, FA

F(g-/)

1.4. NATURAL TRANSFORMATIONS 16

Moreover, these are the diagrammatic outer-inverse of a normal functor box:

F F F

A|FA |4 A|FA | . FA | A A|FA | .. FA | A4
= ldFA = FldA

1.4 Natural Transformations

Using functor boxes, we can use string-diagrams to represent natural transformations, isomorphisms
between categories, as well as adjunctions between functors. That is what we shall see now.

— Definition 1.4.1: Graphical Natural Transformations

LetF,G: € — D befunctors. Theny : F' = Gisanatural transformation ifforall f : X — Y
in @,

FX | X Y [FY/, \GY EX/ O\GX|X Y|Gr
T\ - Tl !

F G

noting that we do not write the components.

— Definition 1.4.2: Graphical Isomorphism of Categories

LetF: € — D and G : D — € be functors. We say that they are isomorphisms of categories if
forall f: 4 - BinCandg:C — DinD,

GEA |F4 |4 B | FB | GEB 4 B
f = | f =
F
G
relee|c| |pleplFep ¢, |D
G
F

For the following, I am using the semi-circle notation for units and co-units as found in [GZ23].

Definition 1.4.3: Graphical Adjunction

LetF: € — D and G: D — € be functors. We say that ' 4 G, or that F is left adjoint to G if
there exist ¢ : idp = GF (known as the #nit) and » : FG = idg, (known as the co-unit) such that

17 CHAPTER 1. BASIC STRING DIAGRAMS AND FUNCTOR BOXES

forall f: 4 - BinCandg:C — DinD,

A B GEB A GFA | FA4 | 4 B | EB | GFB
4 r C f

F
G
FeC| \¢| , |p _ F¥eclec|c| DGDFGDBQ
G
F
GC/ | GFGC FGCDQ GC GC
\31 € —— = | —— |
G
FA| 4/ |GF4|FGEA| \F4 _ F4

N\ .

F

1.4. NATURAL TRANSFORMATIONS

18

Chapter 2

Topoi

Contents
2.1 FiniteLimits 0 0 i i i i it it e e e e et e e e e e e e e 19
2.1.1 Products 19
2.1.2 DPullbacksand Slice Categories 22
2.1.3 Discrete Fibrations 25
2.1.4 Slices of Slices are just Slices of the Base Category 27
2.2 ClosedCategories v i vt vttt i ittt i eneenenns 28
221 WithFunctorBoxes, 29
2.2.2 Bastard Cups/Capsand Clasps 29
2.2.3 Symmetric Monoidal Closed Categories 31
2.3 Sub-objectClassifiers. i i e, 34
N T 41

In this chapter, we will see how we can use string diagrams to reason in arbitrary topoi. To do this, we
will look at how we can reason graphically about each of the component parts: finite limits, cartesian
closedness, and sub-object classifiers. To begin, we will look at finite limits.

2.1 Finite Limits

In this section, I will show how we can reason graphically in categories with finite limits. To do this, I
will first show how we can reason categories with finite products, by invoking Fox’s Theorem. Then,
we shall see that we can extend this, by using functor boxes that represent forgetful functors from slice
categories into their base categories, in order to reason in a category with all finite limits.

2.1.1 Products

We can extend a Theorem, due to Fox [Fox76], as follows

Theorem 2.1.1: Graphical Fox

A symmetric monoidal category € is a cartesian category’ if and only if for each 4 € Ob @, there

19

2.1. FINITE LIMITS

20

exist morphisms (known as the copy morphisms and deleting morphisms respectively)

é{ A
and —e
A

such that

e foreach 4 € Ob G,

SO
s

and

A
A
A
A
A
A
A A
A

B A B
A B A f B
f |~
and
a8, A4,
and

* for each pair of objects {4, B} < Ob €,

A®B A
A®B

SSRRCCE NG N
S5

ARB B

(2.1)

(2.2)

(2.3)

(2.4)

(2.6)

21 CHAPTER 2. TOPOI

and
R
A®B
—e = B (2.7)
—e
| Proof: see [Rom24] for various outlines and different versions of this proof. [|

Hence, we can use these copying and deleting morphisms to reason using string diagrams in categor-
ies with finite products, as we can use finite products to induce a monoidal structure on the category
(moreover, we may assume, that the products are strict due to Theorem 1.2.3).

An example of this can now be seen in proving, graphically, the universal property of products.

— Proposition 2.1.2: Binary Products Universal Property, Graphically
Suppose that € has finite products and that
A b A B
= flc~— = & g = (2.8)
—e
and also that
B
A —® A C
] f gﬁ = — h — (2.9)
then,
¢ B
B =
A L A
—__ e
Proof:

B B B

OThat is to say the monoidal structure is given by the product functor and terminal object.

2.1. FINITE LIMITS 22

f g —

(2:4)8(2.6) { (2:8)%(2.9) {
C
f h —

2.1.2 Pullbacks and Slice Categories

Sﬁlm lm &

Let’s now extend the string diagrams of the last subsection in order to reason about categories with all
finite products.

First, recall (see, e.g., [nlab:fcc])

Theorem 2.1.3
A category € has all finite limits (i.e., is finitely complete) if and only if € has pullbacks and a ter-
minal object.

this gives us the obvious corollary

— Corollary 2.1.4

A category € has all finite limits if and only if © has pullbacks and finite products.

So, we just need to come up with a graphical calculus for categories with pullbacks. In order to do that,
we will use slice categories.

— Definition 2.1.5: Slice Category
Let € be a category and 4 € Ob € an object. Then we define a category €/ A4 called the slice of @

over A as follows:
* objects: an object is a morphism f': X — A4 in &

* morphisms: a morphism g : f; — f, where f{ : X; —» dand f, : X, —» AinC,isa
morphism ¢ : X; — X, in Csuchthat f, o g = f{in &

* composition and identities are the same as in €.

We call € the base category.

We care about slice categories because a category € has pullbacks if and only if every slice category has
finite products. So, if there is a canonical functor from each slice category into the base category, we can
use a functor box to represent this situation. That is what I will now prove.

I— Lemma 2.1.6

23

CHAPTER 2. TOPOI

commutes in € if and only if

fropea
PN
o !

Fé—n h—f

fem

commutes in €/Y.

— Corollary 2.1.7

Proof: (=) First, note that each object in the bottom diagram is indeed an object of € /Y because
they each are morphisms in € with domain Y. Moreover, each morphism in the second diagram is
typed correctly:

* fog=f og =f op,ca showing g iswell-typed;
* fopioa=f op,oa showingais well-typed;

* flog = f op,oa showingg is well-typed;

* fopy = [e pi,showing p, is well-typed; and

e F'op, = f o py, showing p, is well-typed.

Hence, everything in the second diagram is typed correctly. It then obviously commutes as the first
diagram does.

(==) taking Z, X, and X " to be the appropriate domains, we see that the first diagram is correctly
typed. The second diagram shows us immediately that the large top triangle commutes in the first

diagram, so all that needs to be verified is that £ o p; = f o p,. Thisholdsas p, : fop; — f in@/Y. R

@ has pullbacks if and only if for all 4 € Ob €, €/ A has finite products.

Proof: (=) Suppose that € has pullbacks. Then consider some € /.4 and morphisms (of €, objects
of ©/A4) f: X — Aand g : Y — A. As € has pullbacks, the pullback of /"and g exists, but any such
unique « satisfying the universal property of the pullback of f and g will, by Lemma 2.1.6, automat-
ically satisfy the universal property of the product of f and ¢ — showing that the binary product of f
and ¢ does indeed exist in €/ 4.

For €/ A4 to have finite products, it just remains to verify that it has a terminal object. The terminal

2.1. FINITE LIMITS 24

object is id ;. To see this, note that given f : X — A, there is only one map ¢ : X — A such that
id, o g = f, namely f.

(<) Suppose that for all 4 € Ob €, €/4 has finite products. Then consider /' : X — A and
¢ Y — Ain @. The binary product of these exists in €/4, and any « satisfying the universal

property of this product must also satisfy the universal property of the pullback of f and g in €, by
Lemma 2.1.6. [|

Now we need some kind of canonical functor from each slice category to the base category in order to
use functor boxes to characterise finite completeness. Luckily there is such a functor.

— Definition 2.1.8: Slice Forgetful Functor
Let € be a category with 4 € Ob €. Then we can define the forgetful functor U, : €/4 — € as

follows:
* onobjects: /' : X — A, asan objectin €/ 4 is mapped to X, an object in C;

* on morphisms: ¢ : /i — £, asamorphismin €/4 (with f; : X — Aand f, : Y — 4
being objects in €/ 4) is mapped to g : X — Y, a morphism in €.

Moreover, this functor is faithful and so we can use outside-in functor boxes to represent it.

We also use blue boxes, instead of green to represent the morphisms in the slice category. ILe.,

— Definition 2.1.9: Blue Morphism Boxes

Let @ be a finitely complete category, with slices @/C , then for each f : 4 — B in €, we define

| Ll EX (2.10)

and similarly,

A s f (2.11)

Remark 2.1.10. One may worry that when we assume that a finitely complete category is strict with
respect to its product structure, that it also follows that the products in the slice category may also be
assumed to be strict. Luckily, however, we can see that the products in the slice categories are always
strict, irrespective of the properties of the base category, as they are defined in terms of morphisms, which
are associative and have units anyway.

Another nice property of this forgetful functor can be seen next.

25 CHAPTER 2. TOPOI

2.1.3 Discrete Fibrations

In general, it is always possible to expel morphisms from inside-out functor boxes. This can be seen in

the following equality:
FAl A FB FA A [FA Ef FB F4 Ef FB| B FB
3 F F

However, is is not possible, in general, for inside-out functor boxes to eat morphisms. That is, there may

be no 4’ and % such that the following equality holds.

FB|B [FB A|A B |[FB

F F

One of the reasons for this is that the functor may not be surjective (i.e., full and surjective on objects);
there may not be any morphism in the domain category to map onto the morphism in the codomain. We
can generalise surjectivity of functors into a kind of directed surjectivity. This generalisation is known as
the property of being a discrete (op-)fibration. For more on fibrations, see [LR20].

— Definition 2.1.11: Discrete Fibration
A functor F : € — D is a discrete fibration it for each C € €, D € D,and g : D — FC in D, there
is a unique morphism 4 : C " > Cin @such that Fi = g

— Definition 2.1.12: Discrete Op-fibration

A functor F : € — D is a discrete op-fibration if for each C € €, D € Dand g : FC — D in D,
there exists a unique morphism 4 : C — C" in € such that Fz = g.

Graphically, this corresponds to the fact that functor boxes can eat morphisms from the left or right,
depending on whether the functor is a discrete fibration or a discrete op-fibration.

— Theorem 2.1.13: Graphical Discrete Fibrations

AtunctorF : € — D isa discrete fibration if and only if its inside-out functor box can eat,
uniquely, morphisms on the left. That is, whenever

EB|B [FB

2.1. FINITE LIMITS 26

is a morphism, then there exists a unique 4 such that

FB5|B [FB A4 B |FB

Proof: this is immediate from the fact that

FB|B [FB 15 4 F5

F [|

When a functor is a discrete fibration, I draw its box with a porous left-side, to denote that morphisms
may freely pass over this boundary, like

FA 4 |F4
H—

similarly, when a functor is a discrete op-fibration, we may draw its box with a porous right-side.

— Proposition 2.1.14

The forgetful functors from slice categories are discrete fibrations.

Proof: consider a category € with slice €/C ; whenever a morphism like the left hand side exists,
the following equality holds:

Al o |BlE B w 4f B Aleef] o |£]B
Ue Ue
as g o [= g f. Uniqueness follows by the fact that the functor is faithful. [|

So, from now on, I will draw the inside-out functor boxes for the forgetful functors from slice categories
with a porous left side.

One interesting property of faithful discrete fibrations is that they preserve and reflect monomorphisms;
we will use this later to prove the Fundamental Theorem of Topos Theory.

Proposition 2.1.15: Faithful Discrete Fibrations Preserve/Reflect Monomorphisms

Let F : € — D be an faithful discrete fibration. Then f : X — Y is monic in € if and only if Ff
is monic in D.

27 CHAPTER 2. TOPOI

Proof: the fact that F reflects monomorphisms follows from the fact that it is faithful. So, I will just
show that faithful discrete fibrations preserve monomorphisms. Using colouring € and D , suppose
that £ is monic and

| ——
Z FX1 X Y |[FY Z FX1 X 7 Y |[FY

f =— &
Foo oo

| |
then, as F is a discrete fibration, there exist (unique) /2, and 4, such that,

[[
Zi4 X Y [FY Z\B X Y [FY
= o S === h = f

F F

(noting then that we must have that 4 = B), which implies that 2; = h,, as f is monic. But then
g1 = Fh =Fh, = g);ie., Ff is monic. |

So, in particular, each U, : /A4 — € preserves and reflects monomorphisms.

2.1.4 Slices of Slices are just Slices of the Base Category

Finally, we can see that we never need to consider slices of slices, by the following proposition.

— Proposition 2.1.16
Let f: A — Bin ©, then (€/B)/ f is isomorphic to €/ 4.

Proof: defineafunctor F : - — @/ A asfollows (where we have colourings € and[@/B):

alRS

2.2. CLOSED CATEGORIES 28

and its supposed inverse G : €/ A4 — (€/B)/ f as follows:

Now we see that

41 L1

and also that

Consequently, F and G induce an isomorphism between (€/B)/f and C/ 4. |

This concludes the evaluation of graphically representing categories with finite products.

2.2 Closed Categories

Given a monoidal category €, we say it is (left or right) closed when there is a canonical object C for each
pair of objects 4 and B such that C somehow represents the collection of morphisms from 4 to B. This
is particularly useful when we want our category to look like Set, where each collection of morphisms is
itself a set, as we do in the case of Topoi. For more information about closure see [EM66]. Formally, we
define left and right closure as follows.

Definition 2.2.1: Left-Closed Monoidal Category

Let (C,®,1,2,4, p) be a monoidal category. We say that it is left-closed if there exists, for each
A € ObCafunctor 4 - -: € — € such that it is right adjoint to the functor 4 ® - : € — €.

Remark 2.2.2. Similarly, we say that a monoidal category is 7ight-closed if there is a functor-—4 : € —
© such that it is right adjoint to the functor- ® 4 : € — €.

Remark 2.2.3. Any monoidal category that is both left-closed and right-closed is said to be &i-closed.

29 CHAPTER 2. TOPOI

2.2.1 With Functor Boxes

Graphically, using functor boxes, we can represent left-closure as follows.

— Definition 2.2.4: Left-Closure Using Functor Boxes
A monoidal category € is left-closed if and only if for every 4 € Ob € and f : C — B, there exist
natural transformations A and ev, and functors 4 — - such that the following hold (thick wires just
indicate types involving — and have no actual affect on diagrams):
A—-(4®C) A— (4)A A - (4 ®C)
B C - (A4® B ~(A®B — (A4 ®
] f = B ol (2.12)
il f |~]
A —0 .
A A4
B
A=B|B[. CA—oC = F e e
A —0
]
2.14
5 e
- ENE (2.15)
A —0

Right-closure can be represented in the obviously similar way.

2.2.2 Bastard Cups/Caps and Clasps

In [BS10], a notation for left-closed (or alternative, right-closed) monoidal categories is introduced. This
notation is called “bubble and clasp notation”. T think that this notation is unnecessarily cluttered
[GZ23, p. 71], and so have slightly altered it to remove the “bubbles”™. Moreover, the original nota-
tion has not been proved to be coherent [Wij14, p. 27]. But using the machinery of functor boxes, we
can easily prove coherence for the altered notation here. And I strongly conjecture (but do not prove)
that the original bubble and clasp notation is therefore also coherent.

Let’s now see this altered notation, which I call “bastard cap/cup and clasp notation™”.

'Also strings going in different directions have been replaced with co our!
>These are named after the “bastard spiders” of [CK17], which similarly connect wires of different kinds.

2.2. CLOSED CATEGORIES

— Definition 2.2.5: Downward Bastard Cups and Caps

Let € be a monoidal category. We say it admits downward bastard cups and caps if there exist, for
each {4, B} < Ob €, morphisms

p A
A and 4 (2.16)

A S

(so the “clasps” are just typing judgements — and so strings and morphisms may freely move in and

where

out of them, as long as the typing is still correct) and these morphisms also satisfying the yanking

equations:
()) \ = (2.17)
S N
and
J = (2.18)
And similarly...

— Definition 2.2.6: Upward Bastard Cups and Caps

Let € be a monoidal category. We say it admits upward bastard cups and caps if there exist, for
each {4, B} < Ob €, morphisms

B e Erums
A) and (2.19)
A4
where
B B A

= (2.20)

31 CHAPTER 2. TOPOI

and

\ C T - (2.21)

Remark 2.2.7. One thinks of these red (or green) strings as being “in the opposite category”, and so
they send information from right to left, rather than left to right. The black strings are treated as normal
strings of that type, so morphisms can be applied to them (and morphisms may slide through the “clasps”
freely, as though they were not there, like in a normal monoidal category).

— Theorem 2.2.8: Coherence of Bastard Cups and Caps

A monoidal category € has upward bastard cups and caps if and only if it is left-closed. Similarly,
it has downward bastard cups and caps if and only if it is right-closed.

Proof: 1 will only consider left-closure. Defining

to be the unit and

to be the co-unit of the adjunction immediately yields the equivalence between the functor box and
upward bastard cup/cap notation.

The effect of the functor box is to take a morphism and surround it with clasps. This immediately
yields the naturality conditions as we may pull morphisms freely though claps. Similarly, the true
adjointness conditions are precisely the yanking equations. [|

2.2.3 Symmetric Monoidal Closed Categories

In a symmetric category, we can easily see the following proposition (see e.g., [nlab:cmc]).

Proposition 2.2.9
rA category symmetric monoidal € is bi-closed if and only if it is either left-closed or right-closed.

Moreover, in any bi-closed symmetric monoidal category, we can define a (natural) isomorphism between
the two kinds of closure. Graphically, this looks very nice, resembling a swap morphism.

I— Definition 2.2.10

2.2. CLOSED CATEGORIES 32

Let € be a biclosed symmetric monoidal category, with objects 4 and B. Then we define

A B

ot iy

(2.22)

and

A
(AA Ao L
B

SS
SN
[

— Theorem 2.2.11

Let € beabiclosed symmetric monoidal category, with object 4 and morphism f : B — C. Then
the following hold

A B A Y
Bl X/ X B = B (2.24)
B Y B B
;B -
4 C 4 5§ ele
BJ. rle 1 = Bl (2.25)
B c A B 4

/ lc = J\BfCJ\

demonstrating that these swapping morphisms are in fact natural isomorphisms.

Proof: 1 will show Equation 2.24 and Equation 2.25; the other two are similar (in fact you can just
horizontally flip the proofs and swap the red and green strings).

A B A A

4. 4
BJ. B Bl f)(ﬂk Ao &
4

"1
v

33 CHAPTER 2. TOPOI

2.3. SUB-OBJECT CLASSIFIERS 34

This means that when reasoning in a symmetric monoidal category it doesn’t matter which kind of clos-
ure we wish to work with as we can always convert one into another via this isomorphism.

Remark 2.2.12. In the special case where the monoidal structure is given by the product structure of the
category (i.e., it is a cartesian category), we say that the category is cartesian closed, and we usually denote
the (left/right)-closed (up to author preference) as [-]* instead of 4 - — or — — A.

This concludes the analysis of left and right monoidal closure graphically.

2.3 Sub-object Classifiers

Since a topos is in some sense a generalisation of Set, the sub-object classifier condition allows “subset-
like” reasoning. In particular, the object (2 acts like the set {0, 1} in Set, and t acts like 1 in this set.
Subset/set-like reasoning then follows from the idea that if we can define a morphism that acts like the
characteristic function of set, then we can determine which objects are “members” of others. That is
how the sub-object classifier works. Formally,

— Definition 2.3.1: Sub-object Classifier

Let € be a category with a terminal object 1. A sub-object classifier of € is a pair (£2, t), where
* NisinObE; and

* t:1 — Qisamorphismin C,

35 CHAPTER 2. TOPOI

such that for every monic m : 4 — X in ©, there exists a unique morphism y,, : X — 2 such that

—1_>

P I N
D——nr

Xm H

commutes, and is a pullback square.

Remark 2.3.2. We call y,, the characteristic morphism of m.

I am going to give graphical conditions for sub-object classifiers in arbitrary categories (with a terminal
object). As such the slices in general will not have finite products. However, I will use diagrams to rep-
resent a partial monoidal structure induced by those products that do exist. Some care will be needed to
reason in these kinds of categories. In particular, we can only form the monoidal product f ® ¢ if both
the monoidal product of the domain and codomain are known to exist. And as such, the vertical com-
position of two strings is an existence claim that the monoidal product of the two objects represented by
the strings exist.

In order to give the graphical conditions for sub-object classifiers in full generality, we will need the exist-
ence of certain morphisms. These morphisms will be used here — later we shall see that they automatically
existin any category with finite products, and thus will be discharged after giving the graphical conditions
for sub-object classifiers. Here they are:

— Definition 2.3.3

Special morphism’s properties.
For every 4 € Ob €,
to !A
te !A
. (2.26)
exists in € /2. Moreover, the following equality holds:
to !A
tol tol!
4 . = 4 (2.27)

Now we can see the full graphical conditions for categories with sub-object classifiers.

Theorem 2.3.4: Graphical Sub-object Classifiers

A category €, with a terminal object 1, has a sub-object classifier (2, t) if and only if

2.3. SUB-OBJECT CLASSIFIERS 36

* © has “special morphisms” in €/ ;
* if f: 4 — Bismonic in C, then there exists y : B — (2in € such that

|
4] f I A8 (2.28)

N

holds; and

e forevery f and g in G, if there are maps x and y such that

7
BEl4 B[lEE4
|

1
b’qT

Un

and

]
i

)
BN
=
[
)
EN

o
T

qu
b’qT

then f = g.

Proof: (=) For the first condition, note that the following is a pullback square for each 4 in Ob €:

A y—1
! |
l |
A ol —

which implies that the product t o ! ; x t exists in €/£2. Then we can define the “special morphism”
on 4 tobe(id,, ,!,) : te!, — teo!, xt, demonstrating its existence. Then the required property
can be demonstrated by the following:

(ideo, ¥ t) o (idea) = (idyy, o idyy s toly) =id, xidg =id,,,

demonstrating the required property. So, the “special morphisms” exist.
g q property. P %

For the second condition, suppose f : 4 — B is monic. Then there exists a unique Xt B — Qsuch

37 CHAPTER 2. TOPOI

that Xre f = te!,. Moreover, / makes the following diagram commute (in €/£2):

xpxt=tely=xpof

77;(]-“ — i T~ |
=7 =7,
Xf / | T
| i
idB=idzf : t
) i !
){f %idzf:idb’ Zf X ld_Q :Zf Xf ——> ld_Q

and by the universal property of products, we obtain that / = id;(f x tin €/£2, and so,

. | v, |
Xf Af

A B A Af| B A——~_| B
It :_.

] g
| A
i: t \i and : t i
® ®
KU KUy
are both monic (because t is monic), and so as
S |
B4 - B By B4

® ®

and
g g
2 ’ /1
BrNd4 - Bl oy 18], B4
| |

we must have that x o y and y ¢ x are the respective identities.

2.3. SUB-OBJECT CLASSIFIERS 38

So, if we define f° " to be the morphism classified by /" and gl by g, we must have that

y—

7

1
g ; |

t
\l l
A—Ff—30

commutes, and as y is an isomorphism, and the inner square is a pullback square, the outer square
must also be a pullback square; and therefore must be the classifying morphism for g', which means
that f = g, as the classifying morphisms are unique.

(<) Suppose f : 4 — B is monic. Then, there exists 7, : B — 2 in € such that

A B f B
2L f = & i:tﬂ* (2.29)
®
1,
and so
¥ : Af
A rBly 2 - A B |12 w Age 10
® | ®
| |
(oA A N
[[
% i
e A —® t 0 A 0
= 7|t A I—. — = —e
[|
| |

and to see that the square

—~— N

B —%— Q
is a pullback, consider a morphism g : C — Bin €, and suppose that y, o ¢ = t o .. Then, for this

square to be a pullback, we just require the existence of a # : C — A such that f o« = g.2

39 CHAPTER 2. TOPOI

Consider the following:

[
| tol V4
| €l g 4
C Ite !C A
' t
|
|
|
)(U_Q
I will show that this is the required unique .
To see that it has the desired property, consider:
| ; P
| tol
| ' cl ¢ f
C ltels (j A B
| t f
|
|
|
VA
[[
| to!l A ¥4
| €l g 4 i
(229) C't"!c A \i
' t It
| —e
| |
1 N
P |
|
g o |
(L6) 7 A 227) C ltele Af | A

2.3. SUB-OBJECT CLASSIFIERS 40

Finally to see that Xf is the unique morphism with the above properties, suppose that

h—— 1

i

by —~— A

is a pullback square. Then,

is the unique map making

h = =f—hxt=hoef=tel, —a"=,— t
|

|

id),=idy : t
|

1 i !

h < idh:id}i h X ldﬂ = h h% id_Q

commute in €/, which is by Lemma 2.1.6, the unique map making

commute in €. Clearly f makes this diagram commute and so,

| h Af
i f j = A t i (Zi‘)) il t i
e .

T

which implies that 2 = Xp by the third condition, - in other words, Xf is the unique morphism with

these properties. n

This concludes the graphical analysis of sub-object classifiers. Now we can represent topoi graphic-

ally.

Note that! 4 o = follows trivially for any # : C — A. Similarly, any # such that f o # = ¢ must be unique,
asif o u = ¢, then as £ is monic, # = “.

41

CHAPTER 2. TOPOI

2.4 Topoi

A topos is a cartesian closed category with finite limits and a sub-object classifier.

rDeﬁnition 2.4.1: Topos

Before I give the exact graphical calculus for topoi, I will first prove that we never need to worry about

“special morphisms” in the case of topoi.

— Proposition 2.4.2

holdsin €/Q .

A category € (with a terminal object 1, and a morphism t : 1 — (2) has the product 4 x 4 for each
A € Ob €, if and only if € has “special morphisms” and

= (2.30)

pullback square:

Le., the following is a pullback square:

Hence, we may conclude,

and it is not hard to see that P together with 8, and B, must be the product of 4 and 4 in €.

Proof: in order for the equality Equation 2.30 to hold, we need the products to! xtand te! xte!,
to exist in € /2. The former always exists, as the pullback of t o ! ; and t always exists by the following

A ; id,—— A
Yy t°|!4
| |
1 t— 0

and similarly, the product t o !, x t o! , exists in € if and only if the pullback of t o ! ;, with itself exists.

P ; 5, — A4
5|1 t°|!A
| |
A toly — (2

2.4. TOPOI

42

— Theorem 2.4.3: Topoi, Graphically

A category C is a topos if and only if its string diagrams admit:
* copy and deleting maps, as given by Fox’s Theorem;
* products in each of the slice category forgetful functor boxes;
* upward/downward bastard caps/cups; and
* the latter two conditions of Theorem 2.3.4 are satisfied.

Chapter 3

The Fundamental Theorem

Contents
3.1 Slicesof Topoiare Topoi . . v« v v v v v v vt ittt i it et e e e 43
3.1.1 FiniteLimits e 43
3.1.2 Sub-object Classifier, 45
313 Exponentials L L L 47
3.2 Pullback Functor has Left and Right Adjoints 48
32.1 PullbackFunctor 48
322 DependentSumFunctor L 48
3.23 Dependent ProductFunctor Lo oL 53

We shall now see the Fundamental Theorem of Topos Theory [Fre72, p. 24]. Itis in two parts. The first
part, which we shall see in the next section, says that in a topos, each slice category is also a topos. The
second part says that there is a canonical functor, called the “pullback functor”, between each 7/ B and
T | A given a morphism f : 4 — B in the base category T, which is also a topos, and that this functor
has left and right adjoints.

The proof will be done entirely using string diagrams, and in places, which I'shall highlight, will be much
simpler than the non-graphical alternatives.

3.1 Slices of Topoi are Topoi

For the first part of the Fundamental Theorem of Topos Theory, to show that each slice category is a
topos, I will show, in turn, that each slice category of a topos has finite limits, a sub-object classifier, and
exponentials.

3.1.1 Finite Limits

This method of proving that the slice of each topos is finitely complete is unique.

By Proposition 2.1.16, we can see that

Lemma 3.1.1: Slices of Topoi are Finitely Complete
When € is a topos, every slice category €/ 4 of € if finitely complete.

43

3.1. SLICES OF TOPOI ARE TOPOI 44

Proof: consider a slice category C/B of €. We need to show that its slice categories all have finite
products, by Corollary 2.1.7. But if we consider a slice category (C€/B)/f of €/B with f : 4 — B
in @, then we see that /4 = (€/B)/f by Proposition 2.1.16. But we already know that €/4 has
all finite products, as € is a topos, so (€/B)/f must have all finite products too. Graphically, this

amounts to showing that, with G : [@[4| — (€/B)/f , from Proposition 2.1.16, that defining

g{_ g gxg gg< gxg
= —e—— =

G
d d fid d
S B T B U T4 F S 7
G G
and

al, le &, e

L1%*8 A H*&% S1 %43 $H*&

= lxhz =

&, e I

G

tells us that egs. (2.1) to (2.7) are satisfied, as per Fox’s Theorem (Theorem 2.1.1). This is easy to see,

and follows by simple compositionality of functor boxes. |

Now we can examine sub-object classifiers in slice categories.

45 CHAPTER 3. THE FUNDAMENTAL THEOREM

3.1.2 Sub-object Classifier

In order to prove that each slice of a topos has a sub-object classifier, we need a way to “colour change” the
forgetful functors from slice category’s boxes; so that’s what we will prove first. This method is a unique,
to my knowledge, way of proving that each slice of a topos has a sub-object classifier, which arises from
staying within string-diagrammatic constraints.

Recall

— Lemma 3.1.2: Pullback Lemma
Let € be a category. Then suppose the following commutes, and the right-hand square is a pullback

F f— E ; g > D
Lo l
l ! !
A f— B g > C

then the left-hand square is a pullback if and only if the outer rectangle is.

| Proof: see [pwik:pl] or [Gol84, p. 67]. []

— Proposition 3.1.3: Pullback Lemma, Graphically
Define

I I
FEe % |p E :—of, e D
—h 1 = —ih 1k T (3.1)
| | |

and
—
g°f i
iIh_. SE iI 7 o SES (3.2)
| |

ﬁ’
1

Us

Proof: using Lemma 3.1.2, the existence of h' ensures that the pullback of ¢ and / exists. Moreover,
if either the pullback of f and h' or g ° f and & exist, then both exist, by Lemma 3.1.2. Hence, we

see that B‘g’h is the left-hand side of Equation 3.1, and g' of "is the right-hand side, demonstrating the
equality. Similarly, we see that B‘i’h is the left-hand side of Equation 3.2, and 4" is the right-hand side,

3.1. SLICES OF TOPOI ARE TOPOI 46

again, demonstrating the equality. [|

— Lemma 3.1.4: Slices of Topoi have Sub-object Classifiers
Each slice ©/A of a topos € has a sub-object classifier.

Proof: consider the slice - of € and a monomorphism (in €/ 4)

I will show that the sub-object classifier in €/ 4 is 750 *4_and the truth morphism is t x id ; (which we
know exists by previous subsection).

By Proposition 2.1.15, as U, is a discrete fibration, /2 : X — Y must be monic in €. Therefore, there
must be a classifying morphism y, such that

with colouring €/Q .

Then, we can use the Graphical Pullback Lemma to show that / can be colour-changed from being
a morphism in the slice over €/ to the slice over |@ /(2 x 4) , which then tells us that €/ 4 has a

sub-object classifier via the isomorphism € /(2 x 4) = (@/A)/n’iox’q !

In order to the Graphical Pullback Lemma, first note that

by the definition of what it means to classify a morphism, and then as the projection map is monic,

QQ g
Al = A4 At 4

we conclude that

47 CHAPTER 3. THE FUNDAMENTAL THEOREM

and so, by Proposition 3.1.3 The Graphical Pullback Lemma,

Xi”i()XA ° <Xh’g2) =Xh Y X Y
-/ t - = (33)
I_.

|
\(l{() OxA

Hence, via the isomorphism G : €/(Q2 x 4) = (C/A) [given in Proposition 2.1.16, €/ A must
have a sub-object classifier, 7r20 4 with truth morphism t x id ;. Explicitly, we can see this as follows

t X t X

3.1.3 Exponentials

Lemma 3.1.5
rLet @ be a topos, then each slice category €/ 4 has exponentials.

| Proof: omitted.

The proofis omitted here because the use of string diagrams does notadd anything. Itis perfectly possible

3.2. PULLBACK FUNCTOR HAS LEFT AND RIGHT ADJOINTS 48

to encode, for example, the proof in [MM94], in string diagrams. But what ends up happening is still a
diagram chase after all.

This is certainly a place for future work. I conjecture that if string diagrams are to aid the proof in any
way, then a more explicit construction such as [Joh14, Theorem 1.42] would perhaps be more useful.
But, this proof would currently go too far afield, using partial morphisms.

With this Lemma, we can conclude

— Theorem 3.1.6: The Fundamental Theorem of Topos Theory, Part I

Let € be a topos, then each slice ©/ 4 is also a topos.

Next, we will prove part II.

3.2 Pullback Functor has Left and Right Adjoints

In this section, we will see the second part of the Fundamental Theorem. It asserts that a certain functor,
the pullback functor, introduced next, has both left and right adjoints. The constructions of these two
functors, are, in my opinion, much simpler than those in the literature, owing to the string diagrammatic
descriptions. This is particularly true in the case of the right adjoint — the dependent product functor.
I strongly recommend the reader compares the constructions here with those in [MM94, p. 193, The-
orem 2].

3.2.1 Pullback Functor

This is the functor which given f : 4 — B, intuitively takes an object g; of a slice category over B to the
pullback with £.

— Definition 3.2.1: Pullback Functor
Let f: A — Binatopos €, then thisinduces a functor /* : [@[B — €[4 .

Uy

—_—

78 sl e

ailf S| X L Y |& 5§2f — aglf L s 5§2f

|
.
|
¥ g

f

3.2.2 Dependent Sum Functor

First, we shall see the left adjoint, which is known as the “dependent sum” functor.

I— Definition 3.2.2: Dependent Sum Functor

49 CHAPTER 3. THE FUNDAMENTAL THEOREM

Given f': 4 — Bin a topos €, we have 2 : - — -

-.

As we can see, this intuitively just lifts a morphism from € /4 to €/B.

— Lemma 3.2.3
Let € be a topos with morphism f : 4 — B. Then Zf - fr

Proof: fixatopos €, f: A — Bin €, and slice categories - and - Then the claim is that

(giveng, : X — Aand by : Y — B)

X A d and
§ B

are the unit and counit of the adjunction, respectively.

To see this, first note that

3.2. PULLBACK FUNCTOR HAS LEFT AND RIGHT ADJOINTS

S0

SO W€ can see

51

CHAPTER 3. THE FUNDAMENTAL THEOREM

Establishing the first required identity for the adjunction.

For the second, note that

3.2. PULLBACK FUNCTOR HAS LEFT AND RIGHT ADJOINTS

52

and then we have

U, U
A : A:gl
iy L
2 b e

| L

| |

| |
KT, KT,

which demonstrates the third required equality.

; 1£1

a e &l e
T S
demonstrating the second required equality for the adjunction.
For the third, we have
Us
| g
1. l 12 1 1.
anggiffﬁllrfo 'Zf Bgf
i ngf L l'
T f
U, U,
4 : A:g1
A ' A ' uf
| EEpfes el |7
: Bgle L :_
| |
<0 <0

53 CHAPTER 3. THE FUNDAMENTAL THEOREM

Finally,

demonstrating the last required equality. ||

3.2.3 Dependent Product Functor

Now we can see the right adjoint, the “dependent product” functor.

— Definition 3.2.4: Dependent Product Functor

Given f': 4 — Binatopos @,wehaver:-—>-.

B | L

3.2. PULLBACK FUNCTOR HAS LEFT AND RIGHT ADJOINTS 54

Again, this functor intuitively just lifts each morphism in €/ 4 to one in €/B.

— Lemma 3.2.5
Let @ be a topos with morphism f': 4 — B. Then f~ IYf

Proof: fixatopos €, f: A — Bin €, and slice categories - and - Then the claim is that
(giveng, : Y — Band by : X — A)

are the unit and counit of the adjunction, respectively.

To see this, first note that

and then the first required equality to demonstrate the adjunction (showing that the unit is natural

transformation) is immediately obvious:

55

CHAPTER 3. THE FUNDAMENTAL THEOREM

For the second, first note that

then we have

3.2. PULLBACK FUNCTOR HAS LEFT AND RIGHT ADJOINTS

56

(L6

demonstrating the second required equality.

For the third,

(220)

And, finally, for the fourth,

57 CHAPTER 3. THE FUNDAMENTAL THEOREM

Ur—————] Ur—7
Al AI ® Egl’f
agpf 181 f— | Bgl’f
= A | 1 2
| If
49 KUy
Uy U
[|
&) f 181
9 Eglf /A — ngf o2 Dg S I,— Bglf s Bglf
| |
f
o e
completing the proof. [|

So, we can now conclude the full Fundamental Theorem of Topos Theory

— Theorem 3.2.6: The Fundamental Theorem of Topos Theory

If € is a topos, then each slice €/ 4 is also a topos, and there exists a sequence

Zf—|f*—|17f

of adjunctions for each f': 4 — Bin C.

3.2. PULLBACK FUNCTOR HAS LEFT AND RIGHT ADJOINTS

58

Chapter 4

Categorical Logic

Contents
4.1 Internal TypeTheoryt ennn 59
411 TypeSemantics 59
4.1.2 TermFormationRules 60
4.2 Logical ConnectivesinaTopos, 62
421 Conjunction 63
422 TImplication L L 67
4.2.3 Universal Quantification L Lo 68
4.3 Thelnternal LogicofaTopos 70

In any category we can define a type theory, and in particular, in a topos, we can define a logic over
that type theory. We will see what this general type theory looks like in cartesian-closed categories (hint:
the typed lambda-calculus), and describe the internal logic over the type theory in topoi. Once we’ve
introduced this, we will introduce some nice syntactic sugar into the diagrams, to have a final diagram set,
which corresponds to reasoning in higher-order intuitionistic logic. Here, a predicate is any morphism
with codomain Q2.

The “higher-order” part of the logic means that we can quantify over variables of every type — including
propositions, which is in contrast to first-order logic, where only quantification over objects, and not
formula/propositions, is allowed.

This section is largely based on [Str].

4.1 Internal Type Theory

Given f : B — A in a cartesian closed category (and so in particular a topos), we may interpret this as a
term f'(x) of type A, where x is a free variable of type B. Symbolically, x : B + f(x) : 4, we write for the
Judgement “given x is of type B, f(x) is of type 4”. Extending this idea, in any cartesian closed category,
we may interpret a typed lambda calculus. We shall see this construction now.

4.1.1 Type Semantics

Fix B a collection of base types. Then we have T, the collection of types, generated by the following
rules:

59

4.1. INTERNAL TYPE THEORY 60

* every base type is a type;

* if 4 and B are types, then so is 4 — B;

* lisatype;

* if A and B are types, thensois 4 x B; and
* nothing else is a type.

A context is an expression of the form x; : 4, ..., x, : 4,, where z is a natural number, each 4; is a type,
and the variables x; are pairwise distinct.

To interpret a type theory in a closed cartesian category €, we simply fix an assignment [: B — Ob €
on the base types of the theory.

This is then extended naturally as follows into an assignment from all types into the objects of C:
+ [4 — B] = [B]Y;
* [AxB] :=[4] x[B]; and
* [1] := 1, the terminal object in €.

Moreover, we interpret a context as follows:

[[xl :AI’ s Xy An]] = [[Al]] X X [[Anﬂ

We write I” + ¢ : A to indicate that ¢ is a zerm of type A in context I". We interpret this judgement as
being true if and only if there exists a morphism [I' + ¢ : 4] : [I] — [4] in €.

Now we can see the calculus on these types in a given context, which corresponds to the existence of
certain morphisms in any cartesian closed category. This tells us how we can construct new terms in any
cartesian closed category — i.c., term formation rules.

4,1.2 Term Formation Rules

The rule
xl :Al’ veey x” H An [xl' :A[(Va.r)

is interpreted as constructing the morphism

A

8

A;

A}’l

—o
The rule

I,x:Av+t:B
()

I'+Qx:At): A— B

61 CHAPTER 4. CATEGORICAL LOGIC

is interpreted as constructing the morphism

[71
4] [[T,x:AI—t:B]]Mff

The rule

I'+t:4A—B I'+s5:4
A
I'r1t(s): B (App)

is interpreted as constructing the morphism

| [B]

I'+-t:4A— B
i B L\
[[fl—s:A]]w

The rule
I'+¢t:4 I'+s5:8B .
P
I+ (t,5s): AxB (Pair)
is interpreted as constructing the morphism
[I+r:A] 141
[71
(2]
[I'+s:B]——
The pair of rules
I'+t:AxB . I'+t:AxB .
=A% (P = 2 L720 (P
I'+m(): 4 (Projy) I'+m(): B (Projy)
are interpreted as constructing the morphisms
[4] [4]
N aml AP
[I'+t:AxB] and [I'+¢:AxB]
51, [2]
respectively.
Finally, the rule
(Unit)

I'Ex:1

is interpreted as constructing the morphism

[]

—e

It can be seen, e.g., in [Str], or graphically in [GZ23] that this is sound and complete with respect to the
typed lambda calculus, with 7 equivalence.

4.2. LOGICAL CONNECTIVES IN A TOPOS

4.2 Logical Connectives in a Topos

From here on, fix a topos € .

Remark 4.2.1. Twill henceforth write t ; fort o ! .

The following Lemma tells us precisely when a predicate holds of a morphism.

— Lemma 4.2.2
This is in any finitely complete category with sub-object classifiers.

if£1>£=ﬁo<P (4.1)

if and only if there exists a g : 4 — B .1 such that

P
|
Bx.1
A f 8 _ A4 g Lt - EN (4.2)
—e
1405
Proof: (=)
] |
| | Pof 7 P
| |
A B AP o P|B AP o \ | B
i R H_f f = 1 2]
| | Pof
| |
| |
|
\(IUQ KU,
| Pof r E | Pof PRE
| |
w Al |8 _ 4ly \|5
| ty | ty t
l ['y e
| |
N Vs
[[
| Po P | P
| f f

63 CHAPTER 4. CATEGORICAL LOGIC

Bx 1P
|
A f £ P 2 w4 g i:t NE P 2
I_.
Yo
By 18 i Bx1tP
11 I 11
_ i g e :ﬁt B:P Q _ i g B :_t. Q
r® i r®
| |
KUy KU, ¥
IP I |
4 Brli—e | |t 4 Bl 1t o
= — 4 it 4 —® — = — & —e —e —
| | |
O, ¥, 0,

Using this, we can introduce the familiar logical operations.

4.2.1 Conjunction

First up, is conjunction. As the right-hand side of the below equation is (trivially) monic, we can define
a morphism uniquely as its subobject classifier, this is A.

—.0 i 0
/\ I
i t : (4.3)

— Definition 4.2.3

Its truth conditions are expressed as expected.

— Proposition 4.2.4

AL F & Aq
N A2 L <: %9 (4.4)
B Q /

4.2. LOGICAL CONNECTIVES IN A TOPOS 64

if and only if

Al 12 ﬁ.<P and 2 g 2 - ﬁ.@(u)

Proof: by Lemma 4.2.2, Equation 4.4 holds if and only if there exists a morphism x such that

A 0 A A 0
= X m 0 ('42)
= ity =
Blle B/ . g
4%
which in turn holds if and only if Equation 4.5 holds. [|

We can now prove some (nice) properties of A. We can show it is a commutative monoid with respect to
the (strict) product structure on each topos.

— Lemma 4.2.5
0

2

0

0
0 AN — (4.6)

and

W

A

o,

—
|/\°7

Ay
|

I_‘
YU,

|
Tt o
R -

:
%ﬁ

and, by Lemma 4.2.2, these hold if and only if

Proof: Equation 4.6 holds if and only if there exists maps x and y such that

—

ANea [0

B R

e

O,

1

A2

e N
:—0
\ZUQ

65 CHAPTER 4. CATEGORICAL LOGIC

and
A IARgEE: 0 A Q
A | M N\ = = 4
Y G- o X] A “eo <F (4.8)
R
hold.
Butas
| — t Q
| A 0 0 0
omle -, F
t
Un
0
4\
_ - «
e/
both Equation 4.7 and Equation 4.8 must hold. [
Now I will show that A is associative, which is done first by seeing the following.
— Lemma 4.2.6
0 0 0
N
0 A 0 0
0 A .Q 1 = !27 /‘t/txtxt —
Proof: this is true if and only if there exist x and y such that
. 0
—— 0 0 N\
A% (/\ X ld_Q) — | Aexixt [
A2 _ 4 | T 2 . Adg g1
N Yo o
<, VA e
and
. 0
01 (A txtxt % 4 A% (/\ X Id_Q) %
t———— = it - = J Pt N
—® |2 —® 2

4.2. LOGICAL CONNECTIVES IN A TOPOS 66

By Lemma 4.2.2, these both hold if and only if.

0
t}/\%/\ﬁ_ﬁﬁ

which we see because

Which completes the proof. [|

The same reasoning shows us that

0 0
0
% A .Q A A = gj /‘t,txtxt Q
and so we conclude that
— Proposition 4.2.7
0 0
—_— 0
0 =N 0 LS
=e A — E=| ——

Theorem 4.2.8: A is a Monoid
FA is a symmetric monoid with monoidal unit t (with respect to the product structure).

| Proof: the only thing left to prove is that t is the monoidal unit, which is similar to the above. [|

Finally, we can see how this interacts with the comonoidal structure on a topos induced by the product

67 CHAPTER 4. CATEGORICAL LOGIC

structure.
— Proposition 4.2.9
0
Q - -
| Proof: similar to everything else above. [|

Remark 4.2.10. Given the results of this subsection, I will denote conjunction in a category as a small
triangle, like the copy maps, but with only 1 output. These triangles can take in as many inputs as needed,
and it will be unambiguous what is meant — the pairwise conjoining of two of the inputs, where the order
does not matter. To reflect that t is the unit of the adjunction, I will draw it as the small triangle with
no inputs, and a single output. The triangle with exactly one input and exactly one output is just the
identity on (2.

4.2.2 Implication

We will define implication in terms of conjunction and logical equality. So first we will see how to define

logical equality.
— Definition 4.2.11
A4 A a4 A
i E e] (4:9)

Remark 4.2.12. Twrite ‘=’ for eqg,.

— Proposition 4.2.13
B 7 A
B \ 0 B 0
eq, = = o (4.10)
B P, A /
if and only if
Blpld - Bl 4 (4.11)

4.2. LOGICAL CONNECTIVES IN A TOPOS 68

Proof: by Lemma 4.2.2, Equation 4.10 holds if and only if there exists an /2 such that

4 — 4 4

B T B n B B A
= — h %tﬁ =] h
¢ |4 ® |4 A

o

which holds, via the universal property for the product if and only if Equation 4.11 holds. [|

— Definition 4.2.14

= (4.12)

where I am using the white triangle to represent conjunction, as discussed earlier.

— Theorem 4.2.15: Graphical Modus Ponens

@
o €

implies that
i o i 0

| Proof: immediate from the definitions of A and <. [|

4.2.3 Universal Quantification

We have a different universal quantifier for every type in €.

— Definition 4.2.16: Universal Quantification

'V—A A
e dLge
r®

g,

Then it has truth conditions as follows.

69 CHAPTER 4. CATEGORICAL LOGIC

— Proposition 4.2.17
A
B B
— f J\Q Yy ECH <}£
if and only if
A A
A - 4.<]£
B - B
| Proof: this is similar to the conditions for A and eq. [|

Finally, we can introduce some more notation, which allows us to abstract away with universal quantifi-
ers, and treat them just like states. So, we define

‘ X
24 X L VY
Y P ﬁj JES 2

,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,

With just these three logical operations, we can define every other logical operation in higher-order intu-
itionistic logic. The following definitions are what we need.

Fi=V(p:0)¢

4.3. THEINTERNAL LOGIC OF A TOPOS 70

I(a: A).p(x) = V(¥ : 2).(V(x: A).p(x) = ¥) = ¢

—|¢:=¢=>f

4.3 The Internal Logic of a Topos

We will now extend the type theory of section 4.1. Terms of type 2 in a context, are called the proposi-
tions of the context, and are special. In contrasts to the judgements of type theory, we now have sequents.
If I'isacontextand I' + ¢, : Qfori = 1,...,n,and I + ¢ : (2, then we write

Tl¢p s g8

if there exists an x : ﬁ[[F] — [I] such that
i=1

g, 01

L1171
= x 7] [I+¢: 0= =

Wlirvg -0

and I will write @ as a shorthand for ¢,, ..., 4,.

We will add some new term-forming rules (specific to 2) which allow us to use the logical connectives
that we saw in the previous section.

I'+¢:0 I'-y:0

I'F¢Ay:0Q *)
I'Ht:0 (t)
I'-¢:0 I'-y:0
I'-¢=9y:0 (=)
I'-¢:4— 0 v)

I'rV(x:A4).4(x): 02
These correspond to the obvious morphisms in the topos.

With these, we can start to define the rules of the logic over the type theory. The first collection of rules
tell us the valid structural rules of the logic, which are not of interest to us (although substructural logics
are definitely of interest in general: see for example [Abe24] and [Res99]). As such, I will only give two
examples of which morphisms these correspond to.

c:d4d—>1T F|@I—¢

2100+ 41 (Subst)

INory T'r¢:0

1@ 3y (Weak)

71 CHAPTER 4. CATEGORICAL LOGIC

I'\o ¢ ¢ry
I'\®, ¢ry

I'| D, ¢, 8, Oy
I'|D, ¢y ¢, Oy
f}—¢:.Q (
I'lgr¢
I'|dr¢ T|0gry
I'ory

(Contr)

(Perm)

Ax)

(Cut)

Let’s see which morphisms the (Contr) and (Ax) rules correspond to. The (Contr) rule says that given
that there exists an x such that

1]

n+2 [[11'_¢1:'Q]]
E[[f]] x 7] [I'ry:Q] = :
ﬂ [[fl—¢n:.Q]]
ﬂ [[TI—gb:.Q]]
W e g0
there must be a y such that
[7]
n+l - ﬂf|—¢1:
’E[m] Y] [I'+vy:0] = ;
ey,
ﬂ [I'+¢:
We see this is the case by
n ﬂ I'+¢:0
i —) [+, 2]
= x Fry:0]= =
[[T]] ﬂ [[fl—¢n:.Q]]
IITI—¢:.Q]]

IIFI—gS:.Q]]

4.3. THEINTERNAL LOGIC OF A TOPOS 72

g, 01

Wireg, 0
Ew{ﬂfl—gzﬁ:ﬂ]]
[F+¢:0]

1]

[]

ﬂ[[fl—gé:()]]

g o

M[[11I—¢”:.Q]]

ﬂ[[fl—gb:()]]

The Ax rule says given a morphism [I" + ¢ : Q] : [I] — £, there exists an x such that

A g0 - Hipes.02 a2
- Mg 2

this is trivially satisfied by the identity on [/.

Now we can see the rules for the logical operations, and the morphisms they correspond to in each
topos.

73 CHAPTER 4. CATEGORICAL LOGIC

—— (tI
T|@Ft(t)

I'Nor¢ I'\ory

I'NQrg¢ny (AD)

I'No-¢ny

[lorg VED

I'No-¢ny

[Tory ("EY

I'\o, ¢y

Forg=y D

I'or¢=y I'Nor¢

I|ory (=E)

Iyx: 4| D+ ¢(x)

I'|DrV(x:A4).4(x) (vVD

I'|D+V(x:A).p(x)
Iyx: 4| D+ ¢(x)

(VE)

These morphisms can be easily inferred from the truth conditions given in the previous subsection.
Hence, we see that the internal logic of a topos is sound with respect to these rules. In fact, however,
it is not complete, there are three rules missing: the axiom of unique choice, and extensionality of both
functions and predicates. Completeness is proved by showing that these rules form a topos themselves.
For a detailed proof, see [Str, Chapter 13].

4.3. THEINTERNAL LOGIC OF A TOPOS

74

Chapter 5

Conclusion

In conclusion, we have seen a string-diagrammatic presentation of topoi. I have shown how this can be
used to do topos theory purely via string diagrams — at least the parts that deal with categorical logic, and
the fundamental theorem. In places, particularly in the case of the dependent product functor, we saw
a significant simplification over the classical constructions.

It is my hope that these diagrams can be fine-tuned and used further to simplify topos theory and reas-
oning inside of topoi. Paraphrasing [Joh02], I hope that this can be the beginning of another sketch of
the elephant that is topos theory.

Perhaps there is also use to be found in the string-diagrammatic syntax for higher-order intuitionistic
logic presented in the final section. At least, it should be possible to define an entire proof assistant,
which allows for everything to be proved using string-diagrams, although just as it is cumbersome to
do everything with pure set theory, I suspect it would be cumbersome to limit everything to being done
within string diagrams. So, again, the usefulness of this, outside of working within a topos directly, is
unclear.

I have quite a few comments on where this work could be extended.

* Iwould like to see a purely diagrammatic characterisation of each U, : €/ 4 — @, so that we never
have to consider the actual action of the function, but can stay purely within string diagrams —
this may not be possible, although I conjecture that everything can be proved with the graphical
pullback lemma;

* Iwould like to see a good, simple, string diagrammatic account of the construction of exponentials
in each slice of a topos — as remarked before, I think that if this is possible, then it would be most
likely to be possible with the construction given in [Joh14];

* I'would like to see the construction of coproducts in a topos done with string diagrams;

* I would like to see what a boolean topos looks like string diagrammatically, and perhaps, more
general, any boolean category;

* I would like to see if this string-diagrammatic presentation yields any improvements in under-
standing in more areas of topos theory — and in particular in a Grothendieck topos, rather than in
the elementary topoi considered here; and finally

I would like to see whether the string-diagrammatic syntax for higher-order intuitionistic logic

75

76

could aid in finding a normal form for higher-order intuitionistic logic formula — as no such nor-
mal form exists.

References

[Abe24]

[BS10]

[CK17]

[D-CYP+23]

[EM66]

[Fox76]

[Fre72]

[Gol84]

[GZ23]

[Joh02]

[Joh14]

[1S88]
[JS91]

C. B. ABERLE. Foundations of Substructural Dependent Type Theory. 2024. arXiv: 2401.
15258 [cs.LO]. URL: https://arxiv.org/abs/2401.15258.

J. BAEZ, and M. Stay. ‘Physics, Topology, Logic and Computation: A Rosetta Stone’.
In: New Structures for Physics. Edited by: B. CoECKE. Springer Berlin Heidelberg, 2010,
pp- 95-172. 1sBN: 9783642128219. DOI: 10 . 1007 /978 -3 - 642 ~12821-9 _2. URL:
http://dx.doi.org/10.1007/978-3-642-12821-9 2.

B. CoeckE, and A. KISSINGER. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

S. DUNDAR-COECKE, L. YEH, C. Puca, S. M.-L. PFAENDLER, M. H. WaseewMm, T.
CEervONT, A. KISSINGER, S. GOG1050, and B. COECKE. ‘Quantum Picturalism: Learn-

ing Quantum Theory in High School’. In: 2023 IEEE International Conference on Quantum
Computing and Engineering (QCE). IEEE, September 2023. po1: 10.1109/qce57702.
2023.20321. URL: http://dx.doi.org/10.1109/QCE57702.2023.20321.

S. EILENBERG, and G. M. KeLLY. ‘Closed Categories’. In: Proceedings of the Conference
on Categorical Algebra. Edited by: S. EILENBERG, D. K. HARRISON, S. MACLANE, and
H. ROHRL. Springer Berlin Heidelberg, Berlin, Heidelberg, 1966, pp. 421-562. 1SBN:
978-3-642-99902-4.

T.Fox. ‘Coalgebras and cartesian categories’. In: Communications in Algebra 4(7)(1976),
pPp- 665-667.DOI: 10.1080/00927877608822127.

P. FREYD. ‘Aspects of topoi’. In: Bulletin of the Australian Mathematical Society 7 (1)
(1972), pp. 1-76. DOI1: 10.1017/S0004972700044828.

R. GOLDBLATT. Topoi. the categorical analysis of logic. Revised Edition. Studies in logic
and the foundations of mathematics. Elsevier Science, 1984.

D. GHica, and F. ZANASL. String Diagrams for A-calculi and Functional Computation.
2023. arXiv: 2305.18945 [cs.LO]. URL: https://arxiv.org/abs/2305.18945.

P. T. JOHNSTONE. Sketches of an Elephant: A Topos Theory Compendium. Clarendon
Press, Oxford, England, 2002.

P. JOoHNSTONE. Topos Theory. Dover Books on Mathematics. Dover Publications, 2014.
ISBN: 9780486493367.

A.Jovar, and R. STREET. Planar diagrams and tensor algebra. 1988.

A.Jovar, and R. STREET. “The geometry of tensor calculus, I'. In: Advances in Math-
ematics 88 (1) (1991), pp. 55-112. 1ssN: 0001-8708. po1: https://doi.org/10.1016/
0001-8708(91)90003-P. URL: https://www.sciencedirect.com/science/article/
pii/000187089190003P.

77

https://arxiv.org/abs/2401.15258
https://arxiv.org/abs/2401.15258
https://arxiv.org/abs/2401.15258
https://doi.org/10.1007/978-3-642-12821-9_2
http://dx.doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1109/qce57702.2023.20321
https://doi.org/10.1109/qce57702.2023.20321
http://dx.doi.org/10.1109/QCE57702.2023.20321
https://doi.org/10.1080/00927877608822127
https://doi.org/10.1017/S0004972700044828
https://arxiv.org/abs/2305.18945
https://arxiv.org/abs/2305.18945
https://doi.org/https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/https://doi.org/10.1016/0001-8708(91)90003-P
https://www.sciencedirect.com/science/article/pii/000187089190003P
https://www.sciencedirect.com/science/article/pii/000187089190003P

REFERENCES 78

[LR20]

[Macé63]
[Mac71]

[Mel06]

[MMO94]
[nlab:cmc]

[nlab:fec]

[pwik:pl]

[Res99]
[Riel7]

[Rom24]

[Sel11]

[Str]

[Wij14]

F. LorEGIAN, and E. R1eHL. ‘Categorical notions of fibration’. In: Expositiones Math-
ematicae 38 (4) (2020), pp. 496-514. 1ssN: 0723-0869. DOI: https://doi.org/10.
1016/ 7j .exmath.2019.02.004. URL: https://www.sciencedirect.com/science/
article/pii/S0723086918300872.

S. Mac LaNE. ‘Natural Associativity and Commutativity’. In: Rice Institute Pamphlet
- Rice University Studies 49 (1963), pp. 28-46.

S. Mac LANE. Categories for the Working Mathematician. 2nd edn. Graduate Texts in
Mathematics. Springer New York, New York, 1971.

P.-A. MELLIES. ‘Functorial Boxes in String Diagrams’. In: Computer Science Logic. Ed-
ited by: Z. Esix. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 1-30. 1sBN:
978-3-540-45459-5.

S.Mac LANE, and I. MOERDIJK. Sheaves in Geometry and Logic. A First Introduction to
Topos Theory. Universitext. Springer New York, New York, 1994.

NLAB AUTHORS. dlosed monoidal category. Revision 56. August 2024. URL: %5Curl %
7Bhttps://ncatlab.org/nlab/show/closed+monoidal+category%7D.

NLAB AUTHORS. finitely complete category. Revision 26. August 2024. URL: https://
ncatlab.org/nlab/show/finitely+complete+category.

ProOF WIKIAUTHORS. Pullback Lemma. ChangeID 690525, April 2024. URL: https:
//proofwiki.org/wiki/Pullback_Lemma.

G. RESTALL. An Introduction to Substructural Logics. Routledge, New York, 1999.

E.R1eHL. Category theory in context. Aurora: Dover modern math originals. Dover Pub-
lications, 2017. 1sBN: 978-0-486-82080-4.

M. ROMAN. instances of Fox’s theorem. July 2024. URL: https : //mroman42 . github.
io/notes/pieces/Foxs-theorem/.

P. SELINGER. ‘A Survey of Graphical Languages for Monoidal Categories’. In: New Struc-
tures for Physics. Edited by: B. CockE. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 289-355. 1SBN: 978-3-642-12821-9. DOI: 10.1007/978-3-642-12821-9_4.
URL: https://doi.org/10.1007/978-3-642-12821-9_4.

T. STREICHER. Introduction to Category Theory and Categorical Logic. URL: https://
www2 .mathematik.tu-darmstadt.de/~streicher/CTCL.pdf.

G. WiyNHOLDs. ‘Categorical Foundations for Extended Compositional Distributional
Models of Meaning’. MSc Thesis. Universiteit van Amsterdam, 2014.

https://doi.org/https://doi.org/10.1016/j.exmath.2019.02.004
https://doi.org/https://doi.org/10.1016/j.exmath.2019.02.004
https://www.sciencedirect.com/science/article/pii/S0723086918300872
https://www.sciencedirect.com/science/article/pii/S0723086918300872
https://ncatlab.org/nlab/revision/closed+monoidal+category/56
%5Curl%7Bhttps://ncatlab.org/nlab/show/closed+monoidal+category%7D
%5Curl%7Bhttps://ncatlab.org/nlab/show/closed+monoidal+category%7D
https://ncatlab.org/nlab/revision/finitely+complete+category/26
https://ncatlab.org/nlab/show/finitely+complete+category
https://ncatlab.org/nlab/show/finitely+complete+category
https://proofwiki.org/w/index.php?title=Pullback_Lemma&oldid=690525
https://proofwiki.org/wiki/Pullback_Lemma
https://proofwiki.org/wiki/Pullback_Lemma
https://mroman42.github.io/notes/pieces/Foxs-theorem/
https://mroman42.github.io/notes/pieces/Foxs-theorem/
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://www2.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf

	Introduction
	Basic String Diagrams and Functor Boxes
	String Diagrams
	Monoidal Categories
	String Diagrams for (Strict) Monoidal Categories
	Symmetric Monoidal Categories

	Functor Boxes
	Inside-out Functor Boxes
	Outside-In Functor Boxes

	Natural Transformations

	Topoi
	Finite Limits
	Products
	Pullbacks and Slice Categories
	Discrete Fibrations
	Slices of Slices are just Slices of the Base Category

	Closed Categories
	With Functor Boxes
	Bastard Cups/Caps and Clasps
	Symmetric Monoidal Closed Categories

	Sub-object Classifiers
	Topoi

	The Fundamental Theorem
	Slices of Topoi are Topoi
	Finite Limits
	Sub-object Classifier
	Exponentials

	Pullback Functor has Left and Right Adjoints
	Pullback Functor
	Dependent Sum Functor
	Dependent Product Functor

	Categorical Logic
	Internal Type Theory
	Type Semantics
	Term Formation Rules

	Logical Connectives in a Topos
	Conjunction
	Implication
	Universal Quantification

	The Internal Logic of a Topos

	Conclusion
	References

